File size: 32,157 Bytes
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07826f1
ceb42dc
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342b036
73c1565
 
 
 
 
 
 
342b036
73c1565
 
 
 
 
 
 
 
342b036
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342b036
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342b036
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342b036
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dfbea3
 
73c1565
 
ceb42dc
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63448f7
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb9b56
73c1565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a6c06
 
c12b0ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c1565
 
4677b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c1565
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# Demo for T5 trained on multi-angular AAAC

import textwrap
import re

import streamlit as st 
from spacy import displacy
import graphviz
import seaborn as sns

import aaac_util as aaac

from huggingface_hub.inference_api import InferenceApi


BOILER_PLATE = {
    "Enter your story" : "",
    "Enter question (optional)": "",
}

MODES = [
    # informal analysis
    {'id':'s => a','from':['argument_source'],'to':'argdown_reconstruction'},
    {'id':'s+r => a','from':['argument_source','reason_statements'],'to':'argdown_reconstruction'},
    {'id':'s+j => a','from':['argument_source','conclusion_statements'],'to':'argdown_reconstruction'},
    {'id':'r+j => a','from':['reason_statements','conclusion_statements'],'to':'argdown_reconstruction'},
    {'id':'s+r+j => a','from':['argument_source','reason_statements','conclusion_statements'],'to':'argdown_reconstruction'},
    {'id':'s => r','from':['argument_source'],'to':'reason_statements'},
    {'id':'s+a => r','from':['argument_source','argdown_reconstruction'],'to':'reason_statements'},
    {'id':'s+j => r','from':['argument_source','conclusion_statements'],'to':'reason_statements'},
    {'id':'s => j','from':['argument_source'],'to':'conclusion_statements'},
    {'id':'s+a => j','from':['argument_source','argdown_reconstruction'],'to':'conclusion_statements'},
    {'id':'s+r => j','from':['argument_source','reason_statements'],'to':'conclusion_statements'},
    # extract premises and conclusions
    {'id':'a => c','from':['argdown_reconstruction'],'to':'conclusion'},
    {'id':'a => p','from':['argdown_reconstruction'],'to':'premises'},
    # formalize
    {'id':'p => f','from':['premises'],'to':'premises_formalized'},
    {'id':'p+c+o => f','from':['premises','conclusion','conclusion_formalized'],'to':'premises_formalized'},
    {'id':'c => o','from':['conclusion'],'to':'conclusion_formalized'},
    {'id':'c+p+f => o','from':['conclusion','premises','premises_formalized'],'to':'conclusion_formalized'},
    {'id':'p+f => k','from':['premises','premises_formalized'],'to':'plcd_subs'},
    {'id':'c+o => k','from':['conclusion','conclusion_formalized'],'to':'plcd_subs'},
    {'id':'p+f+c+o => k','from':['premises','premises_formalized','conclusion','conclusion_formalized'],'to':'plcd_subs'},
    # re-reconstruct argument
    {'id':'f+k => p','from':['premises_formalized','plcd_subs'],'to':'premises'},
    {'id':'o+k => c','from':['conclusion_formalized','plcd_subs'],'to':'conclusion'},
    {'id':'p+c => a','from':['premises','conclusion'],'to':'argdown_reconstruction'}
]

TEST_DATA = [
    {"title":"Allergies (AAAC, 2 steps, 2 distractors, 1 implicit premise, 1 implicit intermediary conclusion)","argument_source":"Whoever is a sufferer of allergy to mango is not a sufferer of allergy to sesame or a sufferer of allergy to carrot. And no sufferer of allergy to carrot is hypersensitive to mango. Consequently, every sufferer of allergy to mango reacts allergically to turkey. Yet someone who is not a sufferer of allergy to mango and a sufferer of allergy to cheese is a sufferer of allergy to ginger and a sufferer of allergy to pepper. Plus, every person who is not both a sufferer of allergy to maize and a sufferer of allergy to mustard is a sufferer of allergy to cinnamon or a sufferer of allergy to oat.","argdown_reconstruction":"(1) If someone is a sufferer of allergy to mango, then they are a sufferer of allergy to carrot, or not a sufferer of allergy to sesame.\n(2) If someone is a sufferer of allergy to carrot, then they are not a sufferer of allergy to mango.\n--\nwith generalized disjunctive syllogism (transposition, negation variant) from (1), (2)\n--\n(3) If someone is a sufferer of allergy to mango, then they are not a sufferer of allergy to sesame.\n(4) If someone is a sufferer of allergy to mango, then they are a sufferer of allergy to sesame or a sufferer of allergy to turkey.\n--\nwith generalized disjunctive syllogism from (3), (4)\n--\n(5) If someone is a sufferer of allergy to mango, then they are a sufferer of allergy to turkey.","reason_statements":[{"text":"Whoever is a sufferer of allergy to mango is not a sufferer of allergy to sesame or a sufferer of allergy to carrot","starts_at":0,"ref_reco":1},{"text":"no sufferer of allergy to carrot is hypersensitive to mango","starts_at":121,"ref_reco":2}],"conclusion_statements":[{"text":"every sufferer of allergy to mango reacts allergically to turkey","starts_at":196,"ref_reco":5}],"premises":[{"ref_reco":1,"text":"If someone is a sufferer of allergy to mango, then they are a sufferer of allergy to carrot, or not a sufferer of allergy to sesame.","explicit":"true"},{"ref_reco":2,"text":"If someone is a sufferer of allergy to carrot, then they are not a sufferer of allergy to mango.","explicit":"true"},{"ref_reco":4,"text":"If someone is a sufferer of allergy to mango, then they are a sufferer of allergy to sesame or a sufferer of allergy to turkey.","explicit":"false"}],"premises_formalized":[{"form":"(x): ${F1}x -> (${F4}x v \u00ac${F2}x)","ref_reco":1},{"form":"(x): ${F4}x -> \u00ac${F1}x","ref_reco":2},{"form":"(x): ${F1}x -> (${F2}x v ${F3}x)","ref_reco":4}],"conclusion":[{"ref_reco":5,"text":"If someone is a sufferer of allergy to mango, then they are a sufferer of allergy to turkey."}],"conclusion_formalized":[{"form":"(x): ${F1}x -> ${F3}x","ref_reco":5}],"intermediary_conclusions_formalized":[{"form":"(x): ${F1}x -> \u00ac${F2}x","ref_reco":3}],"intermediary_conclusions":[{"ref_reco":3,"text":"If someone is a sufferer of allergy to mango, then they are not a sufferer of allergy to sesame."}],"distractors":["Every person who is not both a sufferer of allergy to maize and a sufferer of allergy to mustard is a sufferer of allergy to cinnamon or a sufferer of allergy to oat.","Someone who is not a sufferer of allergy to mango and a sufferer of allergy to cheese is a sufferer of allergy to ginger and a sufferer of allergy to pepper."],"id":"8c2c3329-cab8-4bd1-b4e7-3ff26506be9d","predicate_placeholders":["F1","F2","F3","F4"],"entity_placeholders":[],"steps":2,"n_premises":3,"n_distractors":2,"base_scheme_groups":["generalized disjunctive syllogism"],"scheme_variants":["transposition","negation variant"],"domain_id":"allergies","domain_type":"persons","plcd_subs":{"F1":"sufferer of allergy to mango","F2":"sufferer of allergy to sesame","F3":"sufferer of allergy to turkey","F4":"sufferer of allergy to carrot"},"argdown_index_map":{"s0c":5,"s0p0":4,"s1c":3,"s1p1":2,"s2c":2,"s2p0":1,"s1p0":1},"presentation_parameters":{"resolve_steps":[1],"direction":"forward","implicit_conclusion":"false","implicit_premise":"true","redundancy_frequency":0.1,"drop_conj_frequency":0.1,"start_sentence":[0,2]}},
    {"title":"Families (AAAC, 3 steps, 0 distractors, 1 implicit premise)","argument_source":"A person who is not a nephew of Richard is a half-brother of Lance or a son of Jeff, and vice versa. Hence, somebody who is not a nephew of Richard is a half-brother of Lance or a son of Jeff. We may conclude that nobody is neither a nephew of Richard nor a son of Jeff. All this entails that a person who is not a great-grandfather of David is a son of Jeff, owing to the fact that someone who is not a great-grandfather of David is not a nephew of Richard.","argdown_reconstruction":"(1) If, and only if, someone is not a nephew of Richard, then they are a half-brother of Lance or a son of Jeff.\n--\nwith generalized biconditional elimination (negation variant, complex variant) from (1)\n--\n(2) If someone is not a nephew of Richard, then they are a half-brother of Lance or a son of Jeff.\n(3) If someone is a half-brother of Lance, then they are a nephew of Richard.\n--\nwith generalized disjunctive syllogism (transposition, negation variant) from (2), (3)\n--\n(4) If someone is not a nephew of Richard, then they are a son of Jeff.\n(5) If someone is not a great-grandfather of David, then they are not a nephew of Richard.\n--\nwith hypothetical syllogism (negation variant) from (4), (5)\n--\n(6) If someone is not a great-grandfather of David, then they are a son of Jeff.","reason_statements":[{"text":"A person who is not a nephew of Richard is a half-brother of Lance or a son of Jeff, and vice versa","starts_at":0,"ref_reco":1},{"text":"someone who is not a great-grandfather of David is not a nephew of Richard","starts_at":383,"ref_reco":5}],"conclusion_statements":[{"text":"somebody who is not a nephew of Richard is a half-brother of Lance or a son of Jeff","starts_at":108,"ref_reco":2},{"text":"nobody is neither a nephew of Richard nor a son of Jeff","starts_at":214,"ref_reco":4},{"text":"a person who is not a great-grandfather of David is a son of Jeff","starts_at":293,"ref_reco":6}],"premises":[{"ref_reco":1,"text":"If, and only if, someone is not a nephew of Richard, then they are a half-brother of Lance or a son of Jeff.","explicit":"true"},{"ref_reco":3,"text":"If someone is a half-brother of Lance, then they are a nephew of Richard.","explicit":"false"},{"ref_reco":5,"text":"If someone is not a great-grandfather of David, then they are not a nephew of Richard.","explicit":"true"}],"premises_formalized":[{"form":"(x): \u00ac${F2}x <-> (${F4}x v ${F3}x)","ref_reco":1},{"form":"(x): ${F4}x -> ${F2}x","ref_reco":3},{"form":"(x): \u00ac${F1}x -> \u00ac${F2}x","ref_reco":5}],"conclusion":[{"ref_reco":6,"text":"If someone is not a great-grandfather of David, then they are a son of Jeff."}],"conclusion_formalized":[{"form":"(x): \u00ac${F1}x -> ${F3}x","ref_reco":6}],"intermediary_conclusions_formalized":[{"form":"(x): \u00ac${F2}x -> (${F4}x v ${F3}x)","ref_reco":2},{"form":"(x): \u00ac${F2}x -> ${F3}x","ref_reco":4}],"intermediary_conclusions":[{"ref_reco":2,"text":"If someone is not a nephew of Richard, then they are a half-brother of Lance or a son of Jeff."},{"ref_reco":4,"text":"If someone is not a nephew of Richard, then they are a son of Jeff."}],"distractors":[],"id":"5812d3a0-05d0-4e50-af62-416205f6ea22","predicate_placeholders":["F1","F2","F3","F4"],"entity_placeholders":[],"steps":3,"n_premises":3,"n_distractors":0,"base_scheme_groups":["hypothetical syllogism","generalized biconditional elimination","generalized disjunctive syllogism"],"scheme_variants":["transposition","negation variant","complex variant"],"domain_id":"male_relatives","domain_type":"persons","plcd_subs":{"F1":"great-grandfather of David","F2":"nephew of Richard","F3":"son of Jeff","F4":"half-brother of Lance"},"argdown_index_map":{"s0c":6,"s0p0":5,"s1c":4,"s1p1":3,"s2c":2,"s2p0":1},"presentation_parameters":{"resolve_steps":[],"direction":"forward","implicit_conclusion":"false","implicit_premise":"true","redundancy_frequency":0.1,"drop_conj_frequency":0.1,"start_sentence":[0,1]}},
    {"title":"Football (AAAC, 4 steps, 0 distractors, 0 implicit premises, 3 implicit intermediary conclusions, implicit final conclusion)", "argument_source":"If, and only if, someone is a critic of Besiktas JK, then they are an expert of Tottenham Hotspur or a friend of KRC Genk. And everybody who hasn't expert knowledge about Kilmarnock FC doesn't criticize Besiktas JK, and no expert of Kilmarnock FC has expert knowledge about Tottenham Hotspur, and vice versa.","argdown_reconstruction":"(1) If, and only if, someone is a critic of Besiktas JK, then they are an expert of Tottenham Hotspur or a friend of KRC Genk.\n--\nwith generalized biconditional elimination (negation variant, complex variant) from (1)\n--\n(2) If someone is a critic of Besiktas JK, then they are an expert of Tottenham Hotspur or a friend of KRC Genk.\n(3) If, and only if, someone is an expert of Kilmarnock FC, then they are not an expert of Tottenham Hotspur.\n--\nwith generalized biconditional elimination (negation variant) from (3)\n--\n(4) If someone is an expert of Kilmarnock FC, then they are not an expert of Tottenham Hotspur.\n(5) If someone is not an expert of Kilmarnock FC, then they are not a critic of Besiktas JK.\n--\nwith hypothetical syllogism (transposition, negation variant) from (4), (5)\n--\n(6) If someone is a critic of Besiktas JK, then they are not an expert of Tottenham Hotspur.\n--\nwith generalized disjunctive syllogism from (2), (6)\n--\n(7) If someone is a critic of Besiktas JK, then they are a friend of KRC Genk.","reason_statements":[{"text":"If, and only if, someone is a critic of Besiktas JK, then they are an expert of Tottenham Hotspur or a friend of KRC Genk","starts_at":0,"ref_reco":1},{"text":"everybody who hasn't expert knowledge about Kilmarnock FC doesn't criticize Besiktas JK","starts_at":127,"ref_reco":5},{"text":"no expert of Kilmarnock FC has expert knowledge about Tottenham Hotspur, and vice versa","starts_at":220,"ref_reco":3}],"conclusion_statements":[],"premises":[{"ref_reco":1,"text":"If, and only if, someone is a critic of Besiktas JK, then they are an expert of Tottenham Hotspur or a friend of KRC Genk.","explicit":"true"},{"ref_reco":3,"text":"If, and only if, someone is an expert of Kilmarnock FC, then they are not an expert of Tottenham Hotspur.","explicit":"true"},{"ref_reco":5,"text":"If someone is not an expert of Kilmarnock FC, then they are not a critic of Besiktas JK.","explicit":"true"}],"premises_formalized":[{"form":"(x): ${F1}x <-> (${F2}x v ${F3}x)","ref_reco":1},{"form":"(x): ${F4}x <-> \u00ac${F2}x","ref_reco":3},{"form":"(x): \u00ac${F4}x -> \u00ac${F1}x","ref_reco":5}],"conclusion":[{"ref_reco":7,"text":"If someone is a critic of Besiktas JK, then they are a friend of KRC Genk."}],"conclusion_formalized":[{"form":"(x): ${F1}x -> ${F3}x","ref_reco":7}],"intermediary_conclusions_formalized":[{"form":"(x): ${F1}x -> (${F2}x v ${F3}x)","ref_reco":2},{"form":"(x): ${F4}x -> \u00ac${F2}x","ref_reco":4},{"form":"(x): ${F1}x -> \u00ac${F2}x","ref_reco":6}],"intermediary_conclusions":[{"ref_reco":2,"text":"If someone is a critic of Besiktas JK, then they are an expert of Tottenham Hotspur or a friend of KRC Genk."},{"ref_reco":4,"text":"If someone is an expert of Kilmarnock FC, then they are not an expert of Tottenham Hotspur."},{"ref_reco":6,"text":"If someone is a critic of Besiktas JK, then they are not an expert of Tottenham Hotspur."}],"distractors":[],"id":"ead34d89-af68-4add-bb62-caff9043c90f","predicate_placeholders":["F1","F2","F3","F4"],"entity_placeholders":[],"steps":4,"n_premises":3,"n_distractors":0,"base_scheme_groups":["hypothetical syllogism","generalized biconditional elimination","generalized disjunctive syllogism"],"scheme_variants":["transposition","negation variant","complex variant"],"domain_id":"football_fans","domain_type":"persons","plcd_subs":{"F1":"critic of Besiktas JK","F2":"expert of Tottenham Hotspur","F3":"friend of KRC Genk","F4":"expert of Kilmarnock FC"},"argdown_index_map":{"s0c":7,"s1c":2,"s1p1":2,"s2c":6,"s2p0":5,"s1p0":1,"s3c":4,"s3p0":3},"presentation_parameters":{"resolve_steps":[1,2,3],"direction":"backward","implicit_conclusion":"true","implicit_premise":"false","redundancy_frequency":0.1,"drop_conj_frequency":0.1,"start_sentence":[0,2]}}
]

GEN_CHAINS = [
    {"id":"straight (with formalization)","modes":['s => a','s => r','s => j','a => c','a => p','c => o','p+c+o => f']},
    {"id":"straight (without formalization)","modes":['s => a','s => r','s => j']},
    {"id":"hermeneutic cycle 1","modes":['s => a','s+a => r','s+a => j','r+j => a','a => c','a => p','c => o','p+c+o => f']},
    {"id":"hermeneutic cycle 2","modes":['s => a','s+a => r','s+a => j','s+r+j => a','s+a => r','s+a => j','s+r+j => a','a => c','a => p','c => o','p+c+o => f']},
    {"id":"logical streamlining","modes":['s => a','a => p','a => c','c => o','c+o => k','o+k => c','p+c => a','a => c','a => p','c => o','p+c+o => f']},
]

INFERENCE_PARAMS = {
    'max_length':450,
#    'clean_up_tokenization_spaces': False,
    'use_cache':False
}

HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""

CACHE_SIZE = 10000

def params(config):
    pass

    
def build_inference_api():
    inference = InferenceApi(
        repo_id="debatelab/argument-analyst", 
        token=st.secrets['api_token']
    )
    return inference    
    #config.max_answer = 450
    #config.max_seq_len = 450
    #config.no_repeat_ngram_size = 0
    


@st.cache(allow_output_mutation=True)
def aaac_fields():
    fields = []
    for m in MODES:
        fields = fields + m['from']
    return set(sorted(fields))

# defines how to present reason and conclusion statements to the model
@st.cache(allow_output_mutation=True)
def format_statements_list(statements: list) -> str:
    if len(statements)==0:
        return "None"
    list_as_string = ["%s (ref: (%s))" % (sdict['text'],sdict['ref_reco']) for sdict in statements]
    list_as_string = " | ".join(list_as_string)
    return list_as_string

# construct inference graph
@st.cache(allow_output_mutation=True)
def get_inference_graph(argdown_parsed,colors):
    premise_template = """<
    <TABLE BORDER="0" COLOR="#444444" CELLPADDING="10" CELLSPACING="2">
    <TR><TD BORDER="0" BGCOLOR="{bgcolor}" STYLE="rounded"><FONT FACE="sans serif" POINT-SIZE="12"><B>({label})</B> {text}</FONT></TD></TR>
    </TABLE>
    >"""

    conclusion_template = """<
    <TABLE BORDER="0" COLOR="#444444" CELLPADDING="10" CELLSPACING="2">
    <TR><TD BORDER="1" BGCOLOR="white" CELLPADDING="4"><FONT FACE="sans serif" POINT-SIZE="10">{inference}</FONT></TD></TR>
    <TR><TD BORDER="0" BGCOLOR="{bgcolor}" STYLE="rounded"><FONT FACE="sans serif" POINT-SIZE="12"><B>({label})</B> {text}</FONT></TD></TR>
    </TABLE>
    >"""

    g = graphviz.Digraph()
    g.attr(ratio="compress", size="6,10", orientation='portrait',overlay="compress")
    for item in argdown_parsed:
        text = textwrap.wrap("(X) "+item['text'], width=30)
        text='<BR/>'.join(text)[4:]
        #g.attr('node',shape='box', fillcolor='#40e0d0', style='filled')
        g.attr('node',shape='plaintext')
        if len(item['uses'])==0:
            g.node(
                'node%d'%item['label'],
                premise_template.format(text=text,label=item['label'],bgcolor=colors.get('P%d'%item['label'],'white')),
                tooltip=textwrap.fill(item['text'], width=30)
            )
        else:
            inference = "with <I>"+item['scheme']+"</I>"
            if len(item['variants'])>0:
                inference += " ("+(", ".join(item['variants']))+"):"
            inference = textwrap.wrap(inference, width=40)
            inference='<BR/>'.join(inference)
            g.node(
                'node%d'%item['label'],
                conclusion_template.format(
                    text=text,
                    label=item['label'],
                    bgcolor=colors.get('C%d'%item['label'],'white'),
                    inference=inference
                ),
                tooltip=textwrap.fill(item['text'], width=30)
            )

        for i in item['uses']:
            g.edge('node%d'%i,'node%d'%item['label'])

    return g


# get entities for displacy
@st.cache(allow_output_mutation=True)
def get_ds_entities(argument_source,s_parsed,type="reasons"):
    if type=="reasons":
        lab_templ="P%d"
        color_profile = "mako_r"
    elif type=="conclusions":
        lab_templ="C%d"
        color_profile = "rocket_r"
    else:
        return None,None

    ents = []
    colors = []
    pointer = 0
    for item in s_parsed:
        reason = item['text']
        if reason in argument_source:
            idx_start = argument_source.index(reason, pointer)
            idx_end = idx_start+len(reason)
            pointer = idx_end
            ents.append({
                "start":idx_start, "end":idx_end, "label":lab_templ%item['ref_reco']
            })

    # construct colors for reason statements
    palette = sns.color_palette(color_profile,round(3*len(ents))).as_hex()
    colors = {ent["label"]:palette[i] for i,ent in enumerate(ents)}

    return ents,colors

# format raw argdown (inserting line breaks)
@st.cache(allow_output_mutation=True)
def format_argdown(raw_argdown: str, colors=None) -> str:
    if not raw_argdown:
        return "No argument reconstruction to display."
    all_colors = {('color('+str(i+1)+')'):'white' for i in range(20)}
    if colors:
        all_colors.update({('color('+k[1:]+')'):v for k,v in colors.items()})

    def format_statement_block(s):
        r = re.sub('(\([0-9]+\))', r'<br><b><span style="background-color:{color\1}">\1</span></b>', s)
        r = r.format(**all_colors)
        return r
    format_inference_block = lambda s: "<br>--<br><i>"+s+"</i><br>--"
    split = raw_argdown.split(' -- ')
    argdown = format_statement_block(split[0])
    i=1
    while i<len(split):
        argdown = argdown + format_inference_block(split[i])
        if i<len(split)+1: 
            argdown = argdown + format_statement_block(split[i+1])
        i = i+2
    argdown = argdown[4:]# remove first linebreak
    argdown = """<div style="font-family:monospace;font-size:14px">%s</div>"""%argdown
    return argdown

# format formalization as markdown
@st.cache(allow_output_mutation=True)
def get_formalization_display(pform_parsed=None, cform_parsed=None):
    # format premises and conclusion
    premise_list = ['- `%s` (%d)'%(p['form'],p['ref_reco']) for p in pform_parsed]
    premise_list = '\n'.join(premise_list)
    conclusion = '- `%s` (%d)'%(cform_parsed[-1]['form'],cform_parsed[-1]['ref_reco'])

    # check deductive validity
    evaluator = aaac.AAACLogicEvaluator()
    scheme = [p['form'] for p in pform_parsed]
    scheme.append(cform_parsed[-1]['form'])        
    check = evaluator.check_deductive_validity(scheme)
    if check==None:
        eval_message = "(Couldn't parse formulas.)"
    else: 
        check_token = "valid" if check else "invalid"
        eval_message = "The inference from *premises* to *conclusion* is deductively **{check_token}**.".format(check_token=check_token)

    # put everything together
    display_formalization = """##### Premises:\n\n{premise_list}\n\n##### Conclusion:\n\n{conclusion}\n\n{eval_message}"""
    display_formalization = display_formalization.format(premise_list=premise_list,conclusion=conclusion,eval_message=eval_message)

    return display_formalization


def run_model(mode_set, user_input):
    """Main method for running the model 

    :param mode_set: the modes to run
    :param user_input: the user input (dict) 
    :returns: output dict
    """

    inference = build_inference_api()

    current_input = user_input.copy()
    output = []

    for i,mode_id in enumerate(mode_set):
        current_mode = next(m for m in MODES if m['id']==mode_id)
        with st.spinner('Generating output %d of %d with mode %s'%(i,len(mode_set),mode_id)):
            # construct prompt
            inquire_prompt = ""
            to_key = current_mode['to']
            for from_key in current_mode['from']:
                inquire_prompt = inquire_prompt + (f"{to_key}: {from_key}: {current_input[from_key]}")
            # inquire model
            inputs = inquire_prompt
            out = inference(inputs,INFERENCE_PARAMS) 
            out = out[0]['generated_text']
            # cleanup formalization
            if to_key in ['premises_formalized','conclusion_formalized']:
                out = out.replace("⁇","") 
                out = out.replace("  "," ")
                #out = out+"-Hellooo!"
        
            # write output
            output.append({
                'step':i,
                'mode':current_mode,
                'output':out,
                'prompt':inquire_prompt
            })
            # update input
            current_input[to_key] = out

    return output


            

def main():

    st.set_page_config(layout="wide")
    st.title("DeepA2 ArgumentAnalyst Demo")

    ## page details

    # choose example data
    ex_titles = [x['title'] for x in TEST_DATA]
    ex_titles = ['...'] + ex_titles
    ex_s = st.selectbox("1. Select an example...",ex_titles,index=0)
    ex_item = TEST_DATA[ex_titles.index(ex_s)-1]

    user_input = {}

    # Source text
    d = 'argument_source'
    filler = d
    if ex_s != '...':
        filler = ex_item[d]
        filler = filler.lower()
    user_input[d] = st.text_area(
        "...or enter a text to analyze (argument source):",filler,
        height=250
    )
    if user_input[d]==d:
        user_input[d] = ""
    else:
        user_input[d] = user_input[d].lower()


    # modes

    gen_chain_id_s = st.selectbox("2. Select a reconstruction strategy...",[x['id'] for x in GEN_CHAINS],index=0)
    modes_s = next(x['modes'] for x in GEN_CHAINS if x['id']==gen_chain_id_s)

    modes_s = st.multiselect(
        "... or build a custom generative chain (argument source=`s`, reasons=`r`, conjectures=`j`, argdown reconstruction=`a`, premises=`p`, conclusion=`c`, premise formalization=`f`, conclusion formalization=`o`, keys=`k`):",
        [m['id'] for m in MODES]*2,
        modes_s#["s => a","s+a => r","s+a => j","a => c","a => p","c => o","p+c+o => f"]
    )

    # optional additional input 

    input_expander = st.expander(label='Additional input (optional)')
    with input_expander:
        # for every mode, add input field
        for d in [m for m in aaac_fields() if m!="argument_source"]:
            filler = d
            if ex_s != '...':
                filler = ex_item[d]
                if d in ['reason_statements','conclusion_statements','conclusion','premises']:
                    filler = aaac.AAACLayouter.format_statements_list(filler)
                elif d in ['premises_formalized','conclusion_formalized']:
                    filler = aaac.AAACLayouter.format_formalizations_list(filler)
                elif d in ['plcd_subs']:
                    filler = aaac.AAACLayouter.format_plcd_subs(filler)

            user_input[d] = st.text_area(
                d,filler,
                height=250
            )

            if user_input[d]==d:
                user_input[d] = ""


    ## answer a query
    submit = st.button("Process")

    #row = []; index = []
    #row_der = []; index_der = []


    if submit:
        if all(len(v)==0 for v in user_input.values()): 
          st.warning('Please choose an example, or provide input.')
        else:
            with st.spinner("Processing (may take a couple of minutes) ..."):
                output = run_model(modes_s,user_input)

                # get latest generated reasons, conclusions, argdown 
                argdown_raw = [out['output'] for out in output if out['mode']['to']=='argdown_reconstruction']
                argdown_raw = argdown_raw[-1] if len(argdown_raw)>0 else None
                reasons_raw = [out['output'] for out in output if out['mode']['to']=='reason_statements']
                reasons_raw = reasons_raw[-1] if len(reasons_raw)>0 else None
                concl_raw = [out['output'] for out in output if out['mode']['to']=='conclusion_statements']
                concl_raw = concl_raw[-1] if len(concl_raw)>0 else None
                pform_raw = [out['output'] for out in output if out['mode']['to']=='premises_formalized']
                pform_raw = pform_raw[-1] if len(pform_raw)>0 else None
                #pform_raw = "(x): F x -> (G x v H x) (ref: (1)) | (x): F x -> not G x (ref: (3))" # TEST
                cform_raw = [out['output'] for out in output if out['mode']['to']=='conclusion_formalized']
                cform_raw = cform_raw[-1] if len(cform_raw)>0 else None
                #cform_raw = "(x): F x -> H x (ref: (4))" # TEST

                # parse raw output
                argdown_parsed = aaac.AAACParser.parse_argdown_block(argdown_raw) if argdown_raw else None
                reasons_parsed = aaac.AAACParser.parse_statements(reasons_raw) if reasons_raw else None
                concl_parsed = aaac.AAACParser.parse_statements(concl_raw) if concl_raw else None            
                pform_parsed = aaac.AAACParser.parse_formalizations(pform_raw) if pform_raw else None     
                cform_parsed = aaac.AAACParser.parse_formalizations(cform_raw) if cform_raw else None     


                # check syntactic validity
                argdown_valid = (
                    aaac.ad_valid_syntax(argdown_parsed) &
                    aaac.ad_last_st_concl(argdown_parsed) &
                    aaac.used_prem_exist(argdown_parsed) #& 
                    #1-aaac.prem_non_used(argdown_parsed)
                ) if argdown_parsed else False
                reasons_valid = (
                    aaac.s_ord_me_subsseq(reasons_parsed,user_input['argument_source'])
                ) if reasons_parsed else False
                concl_valid = (
                    aaac.s_ord_me_subsseq(concl_parsed,user_input['argument_source']) 
                ) if concl_parsed else False
                reasons_concl_mc = (
                    aaac.reason_concl_mutually_exclusive(reasons_parsed,concl_parsed)
                ) if reasons_parsed and concl_parsed else False
                pform_valid = True if pform_parsed else False
                cform_valid = True if cform_parsed else False

                # get and merge entities and colors for displacy
                ents = []
                colors={}
                if concl_valid:
                    ents,colors = get_ds_entities(user_input['argument_source'],concl_parsed,type="conclusions")
                    if reasons_valid and reasons_concl_mc:                
                        ents_r,colors_r = get_ds_entities(user_input['argument_source'],reasons_parsed,type="reasons")
                        ents= ents+ents_r
                        colors.update(colors_r)
                        ents = sorted(ents, key=lambda item: item["start"])
                elif reasons_valid:
                    ents,colors = get_ds_entities(user_input['argument_source'],reasons_parsed,type="reasons")

                options = {"colors":colors}
                ex = [{"text": user_input['argument_source'],"ents": ents,"title": None}]
                displacy_html = displacy.render(ex, style="ent", options=options, manual=True)

                graphviz_graph = get_inference_graph(argdown_parsed,colors) if argdown_valid else None


            # Show output 
            col_source, col_reco = st.columns(2)
            with col_source:
                st.markdown(f'<div style="font-size: small">Reasons and conclusions in source text</div>',unsafe_allow_html=True)
                st.write(HTML_WRAPPER.format(displacy_html), unsafe_allow_html=True)

            with col_reco:
                ig_expander = st.expander(label='Argument reconstruction (inference graph)', expanded=argdown_valid)
                with ig_expander:
                    if argdown_valid:
                        st.graphviz_chart(graphviz_graph,use_container_width=True)
                    else:
                        st.write("No inference graph to display.")
                lgc_expander = st.expander(label='Formalization', expanded=(pform_valid and cform_valid))
                with lgc_expander:
                    if pform_valid and cform_valid:
                        st.markdown(get_formalization_display(pform_parsed=pform_parsed, cform_parsed=cform_parsed))
                    else:
                        st.write("No formalization to display.")
                ad_expander = st.expander(label='Argument reconstruction (argdown snippet)', expanded=(not argdown_valid))
                with ad_expander:
                    st.write(format_argdown(argdown_raw,colors), unsafe_allow_html=True)

            history_expander = st.expander(label='Full history', expanded=False)
            with history_expander:
                st.write(output)

                #for out in output:
                #    st.write("step: %d, mode: %s" % (out['step'],out['mode']['id']))
                #    output_f = format_argdown(out['output']) if out['mode']['to']=='argdown_reconstruction' else out['output']
                #    st.write(output_f, unsafe_allow_html=True)

        
if __name__ == '__main__':
    main()