Spaces:
Paused
Paused
File size: 21,590 Bytes
73c1565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
### utility for T5-aaac
import re
import ast
import logging
from string import Template
import random
import pyparsing as pp
import z3
PREM_ARG_SCHEMES = {
'modus ponens': 2,
'chain rule': 2,
'adjunction': 2,
'case analysis': 3,
'disjunctive syllogism': 2,
'biconditional elimination': 1,
'instantiation': 1,
'hypothetical syllogism': 2,
'generalized biconditional elimination': 1,
'generalized adjunction': 2,
'generalized dilemma': 3,
'generalized disjunctive syllogism': 2
}
util_logger = logging.getLogger('transformer_tools.util.t5_util')
#######################################
# Layouter class #
#######################################
# Defines how to present AAAC raw data to model (as text)
class AAACLayouter:
PRED_CHARS = "FGHIJKLMNOPQRSTUVWABCDE"
ENT_CHARS = "abcdeklmnopqrstuwfgh"
def substitutions():
substitutions = {"F"+str(i+1):AAACLayouter.PRED_CHARS[i]+" " for i in range(20)}
substitutions.update({"a"+str(i+1):AAACLayouter.ENT_CHARS[i] for i in range(20)})
return substitutions
MASK_STRING = "??"
# defines how to present reason and conclusion statements to the model
def format_statements_list(statements:list, mask_prob:float=0.0) -> str:
if len(statements)==0:
return "None"
def ref_reco(sdict):
r = "(%s)" % sdict['ref_reco'] if random.random()>mask_prob else AAACLayouter.MASK_STRING
return r
list_as_string = ["%s (ref: %s)" % (sdict['text'].lower(),ref_reco(sdict)) for sdict in statements]
list_as_string = " | ".join(list_as_string)
return list_as_string
# defines how to present argdown premise and conclusion statements to the model
def format_ad_statements_list(statements:list, mask_prob:float=0.0) -> str:
if len(statements)==0:
return "None"
def ref_reco(sdict):
r = "(%s)" % sdict['ref_reco'] if random.random()>mask_prob else AAACLayouter.MASK_STRING
return r
def explicit(sdict):
r = str(sdict['explicit']) if random.random()>mask_prob else AAACLayouter.MASK_STRING
return r
list_as_string = ["%s (ref: %s explicit: %s)" % (sdict['text'].lower(),ref_reco(sdict),explicit(sdict)) for sdict in statements]
list_as_string = " | ".join(list_as_string)
return list_as_string
# defines how to present formalizations to the model
def format_formalizations_list(formalizations:list, mask_prob:float=0.0) -> str:
if len(formalizations)==0:
return "None"
def ref_reco(sdict):
r = "(%s)" % sdict['ref_reco'] if random.random()>mask_prob else AAACLayouter.MASK_STRING
return r
def fform(sdict):
t = Template(sdict['form'])
r = t.substitute(AAACLayouter.substitutions())
r = r.replace("¬","not ")
return r
list_as_string = ["%s (ref: %s)" % (fform(sdict),ref_reco(sdict)) for sdict in formalizations]
list_as_string = " | ".join(list_as_string)
return list_as_string
# defines how to present formalizations to the model
def format_plcd_subs(plcd_subs:dict, mask_prob:float=0.0) -> str:
if len(plcd_subs.keys())==0:
return "None"
def mask(s):
return s if random.random()>mask_prob else AAACLayouter.MASK_STRING
list_as_string = ["%s: %s" % (AAACLayouter.substitutions()[k],mask(v.lower())) for k,v in plcd_subs.items()]
list_as_string = " | ".join(list_as_string)
return list_as_string
# defines how to present argdown-snippet to the model
def format_argdown(argdown: str, mask_prob:float=0.0) -> str:
# pattern = r"({.*uses: \[[\s\d,]*\]})" # matches yaml metadata inline blocks in inference patterns
pattern = r"--\nwith ([^{}]*)({[^{}]*})"
matches = re.findall(pattern, argdown)
for match in matches:
m = match[1].replace('uses:','"uses":')
m = m.replace('variant:','"variant":')
d = ast.literal_eval(m)
subst = ""
mask_b = random.random()<mask_prob
if mask_b:
subst= "?? "
elif "variant" in d:
subst = "(%s) " % ", ".join(d['variant'])
subst = subst + "from " + " ".join(["(%s)" % i for i in d['uses']])
if mask_b:
argdown = argdown.replace(match[0]+match[1],subst)
else:
argdown = argdown.replace(match[1],subst)
argdown = argdown.replace("\n"," ") # replace line breaks
argdown = argdown.lower()
return argdown
#######################################
# Parser classes #
#######################################
class AAACParser:
def parse_proposition_block(ad_raw:str,inf_args:dict=None):
if not ad_raw:
return []
ad_raw = ad_raw
if ad_raw[0]!=" ":
ad_raw = " "+ad_raw
regex = r" \(([0-9]*)\) " # match labels
proposition_list = []
if not re.match(regex,ad_raw):
return proposition_list
matches = re.finditer(regex, ad_raw, re.MULTILINE)
label = -1
pointer = -1
for matchNum, match in enumerate(matches, start=1):
if label>-1:
proposition = {
"text":ad_raw[pointer:match.start()].strip(),
"label":label,
"uses": [],
"scheme": "",
"variants":[]
}
proposition_list.append(proposition)
label = int(match.group(1))
pointer = match.end()
if label>-1:
proposition = {'text':ad_raw[pointer:].strip() ,'label':label,"uses": [],"scheme": "","variants":[]}
proposition_list.append(proposition)
if proposition_list and inf_args:
proposition_list[0].update(inf_args)
return proposition_list
def parse_variants(variants_raw)->list:
if not variants_raw:
return []
regex = r"(?! )[^\(\),]+"
matches = re.finditer(regex, str(variants_raw), re.MULTILINE)
return [match.group() for match in matches]
def parse_uses(uses_raw)->list:
if not uses_raw:
return []
regex = r"\(([0-9]+)\)"
matches = re.finditer(regex, str(uses_raw), re.MULTILINE)
return [int(match.group(1)) for match in matches]
def preprocess_ad(ad_raw:str):
ad_raw = ad_raw.replace("\n"," ")
ad_raw = ad_raw.replace(" "," ")
ad_raw = ad_raw.replace("with?? ","with ?? ")
return ad_raw
def parse_argdown_block(ad_raw:str):
ad_raw = AAACParser.preprocess_ad(ad_raw)
regex = r"-- with ([^\(\)]*)( \([^-\(\))]*\))? from ([\(\), 0-9]+) --" # matches inference patterns
proposition_list = []
inf_args = None
pointer = 0
matches = re.finditer(regex, ad_raw, re.MULTILINE)
for matchNum, match in enumerate(matches, start=1):
# parse all propositions before inference matched
propositions = AAACParser.parse_proposition_block(ad_raw[pointer:match.start()],inf_args=inf_args)
if not propositions:
return None
proposition_list.extend(propositions)
# update pointer and inf_args to be used for parsing next propositions block
pointer = match.end()
inf_args = {
'scheme': match.group(1),
'variants': AAACParser.parse_variants(match.group(2)),
'uses': AAACParser.parse_uses(match.group(3))
}
if pointer > 0:
propositions = AAACParser.parse_proposition_block(ad_raw[pointer:],inf_args=inf_args)
proposition_list.extend(propositions)
return proposition_list
def parse_statements(statements_raw:str):
if not statements_raw:
return None
statements = []
if statements_raw.strip()=="None":
return statements
list_raw = statements_raw.split(" | ")
regex = r" \(ref: (?:\(([0-9]+)\)|\?\?)\)$"
for s in list_raw:
match = re.search(regex, s)
if not match:
return None
item = {
'text':s[:match.start()],
'ref_reco':int(match.group(1)) if match.group(1) else match.group(1)
}
statements.append(item)
return statements
def parse_formalizations(forms_raw:str):
parsed = AAACParser.parse_statements(forms_raw)
if not parsed:
return None
formalizations = []
for d in parsed:
d['form'] = d.pop('text')
formalizations.append(d)
# post-process: cleanup "⁇"
for f in formalizations:
form = f['form']
form = form.replace("⁇","")
form = form.replace(" "," ")
form = form.strip()
f['form'] = form
return formalizations
def parse_plcd_subs(subs_raw:str):
if not subs_raw:
return None
plcd_subs = []
if subs_raw.strip()=="None":
return plcd_subs
list_raw = subs_raw.split(" | ")
regex = r"^(..?):\s(.+)"
for s in list_raw:
match = re.search(regex, s)
if not match:
return None
k = match.group(1)
# comment out reverse substitution
#if k in AAACLayouter.PRED_CHARS:
# k = 'F'+str(1+AAACLayouter.PRED_CHARS.index(k))
#if k in AAACLayouter.ENT_CHARS:
# k = 'a'+str(1+AAACLayouter.ENT_CHARS.index(k))
item = {k: match.group(2)}
plcd_subs.append(item)
return plcd_subs
#######################################
# Logic Evaluator Class #
#######################################
class AAACLogicEvaluator():
def __init__(
self,
nl_schemes = None,
domains = None,
**kwargs
):
self.nl_schemes_re = []
if nl_schemes:
self.nl_schemes_re = nl_schemes.copy()
for item in self.nl_schemes_re:
item['scheme'] = [self.construct_regex(s) for s in item['scheme']]
# construct de-paraphrasing rules from domain-config-file
self.de_paraphrasing_rules = {}
if domains:
for domain in domains.get('domains'):
rules = {}
for k,v in domain.get("paraphrases",{}).items():
rules.update({repl.lower():k.lower() for repl in v}) # all paraphrasing rules are cast as lower case
self.de_paraphrasing_rules[domain['id']] = rules
def construct_regex(self,statement:str):
regex = r"( a )?\$\{([A-Za-z])\}"
regex_template = ""
pointer = 0
matches = re.finditer(regex, statement, re.MULTILINE)
for matchNum, match in enumerate(matches):
regex_template += statement[pointer:match.start()].lower()
neg_la = statement[match.end():match.end()+5] if match.end()+5<=len(statement) else statement[match.end():]
if match.group(1):
regex_template += " an? "
regex_template += "(?P<%s%s>.*(?!%s)*)"%(match.group(2),matchNum,neg_la)
pointer = match.end()
regex_template += statement[pointer:].lower()
return regex_template
def parse_inference_as_scheme(
self,
argument:list = None,
nl_scheme_re:dict = None
):
# recursively try to match premises to scheme, i.e. recursively construct a consistent mapping
# mapping maps sentences in
# matching contains all matches found so far
def match_premises(matching:list=None, mapping:dict=None):
#print("match_premises:" + str(mapping))
unmapped_formulas = [i for i in range(len(argument)) if not i in mapping.keys()]
unmapped_premises = [j for j in range(len(argument)) if not j in mapping.values()]
for i in unmapped_formulas:
for j in unmapped_premises:
try:
match = re.match(nl_scheme_re['scheme'][i], argument[j])
except IndexError:
match=False
if match:
matching[i]=match
mapping[i]=j
if any(m==None for m in matching):
full_match = match_premises(
matching = matching,
mapping = mapping
)
else:
full_match = matching_consistent(matching)
if full_match:
return True
else:
full_match = False
return full_match
# check whether a mapping is consistent with respect to placeholders
def matching_consistent(matching:list):
if any(m==None for m in matching):
return False
def group_by_name(match=None, group_name=None):
try:
g=match.group(group_name)
except IndexError:
g=None
return g
all_plcds = (nl_scheme_re["predicate-placeholders"]+nl_scheme_re["entity-placeholders"])
for plcd in all_plcds:
all_subst = []
for i in range(10):
group_name = plcd+str(i)
subst = [group_by_name(match=match, group_name=group_name) for match in matching]
subst = [x for x in subst if x != None]
all_subst.extend(subst)
if len(set(all_subst))>1:
return False
return True
c_match = re.match(nl_scheme_re['scheme'][-1], argument[-1])
if c_match:
try:
g=c_match.group("F")
except IndexError:
g="None"
if c_match:
full_match = match_premises(
matching = [None]*(len(argument)-1)+[c_match],
mapping = {len(argument)-1:len(argument)-1}
)
else:
full_match = False
return full_match
def parse_inference_as_base_scheme(
self,
argument:list = None,
base_scheme_group:str = None,
domain:str = None
):
variant = None
matches = False
# make the entire argument lower case
argument = [item.lower() for item in argument]
argument = self.de_paraphrase(argument, domain=domain) if domain else argument
for nl_scheme_re in self.nl_schemes_re:
if nl_scheme_re['base_scheme_group'] == base_scheme_group:
matches = self.parse_inference_as_scheme(
argument = argument,
nl_scheme_re = nl_scheme_re
)
if matches:
variant = nl_scheme_re['scheme_variant']
break
return matches, variant
def de_paraphrase(self, argument:list = None, domain:str = None):
rules = {}
if domain in self.de_paraphrasing_rules:
rules = self.de_paraphrasing_rules[domain]
for i,statement in enumerate(argument):
s = statement
for k,v in rules.items():
s = s.replace(k,v)
argument[i] = s
return argument
def parse_string_formula(self, formula:str):
atom = pp.Regex("[A-Z]\s[a-u|w-z]").setName("atom")
expr = pp.infixNotation(atom,[
("not", 1, pp.opAssoc.RIGHT, ),
("&", 2, pp.opAssoc.LEFT, ),
("v", 2, pp.opAssoc.LEFT, ),
("->", 2, pp.opAssoc.LEFT, ),
("<->", 2, pp.opAssoc.LEFT, )
])
try:
parsed = expr.parseString(formula,parseAll=True)[0]
except pp.ParseException as e:
parsed = None
return parsed
def c_bf(self,parse_tree):
if not parse_tree:
return None
functions = {}
constants = {}
Object = z3.DeclareSort('Object')
bin_op = {
"&": z3.And,
"v": z3.Or,
"->": z3.Implies
}
pt = parse_tree
if pt[0]=="not":
return z3.Not(self.c_bf(pt[1]))
if pt[1]=="<->":
return z3.And(z3.Implies(self.c_bf(pt[0]),self.c_bf(pt[2])),z3.Implies(self.c_bf(pt[2]),self.c_bf(pt[0])))
if pt[1] in bin_op.keys():
return bin_op[pt[1]](self.c_bf(pt[0]),self.c_bf(pt[2]))
# atom
pred = parse_tree[0]
if not pred in functions.keys(): # add predicate to dict if necessary
functions[pred] = z3.Function(pred, Object, z3.BoolSort())
const = parse_tree[-1]
if not const in constants.keys(): # add function to dict if necessary
functions[const] = z3.Const(const, Object)
return functions[pred](functions[const])
def to_z3(self,str_f:str):
if not str_f:
return None
f = str_f.strip()
if f[:4] == "(x):":
Object = z3.DeclareSort('Object')
x = z3.Const('x', Object)
parsed = self.parse_string_formula(f[4:].strip())
if parsed:
return (z3.ForAll(x,self.c_bf(parsed)))
return None
parsed = self.parse_string_formula(f)
if parsed:
return self.c_bf(parsed)
return None
def check_deductive_validity(self,scheme:list):
premises = [self.to_z3(f) for f in scheme[:-1]] # premises
conclusion = self.to_z3(scheme[-1]) # conclusion
#print(theory)
if any(p==None for p in premises) or (conclusion==None):
return None
theory = premises # premises
theory.append(z3.Not(conclusion)) # negation of conclusion
s = z3.Solver()
s.add(theory)
#print(s.check())
valid = s.check()==z3.unsat
return valid
#######################################
# Main eval function #
#######################################
def ad_valid_syntax(argdown):
check = False
if argdown:
# consecutive labeling?
check = all(p['label']==i+1 for i,p in enumerate(argdown))
# no "--" as statement
check = check and all(item['text']!="--" for item in argdown)
return 1 if check else 0
def ad_last_st_concl(argdown):
check = len(argdown[-1]['uses'])>0 if argdown else False
return 1 if check else 0
# do all statements referenced in inference exist and do they occur before inference is drawn?
def used_prem_exist(argdown):
if not argdown: return None
check = True
previous_labels = []
for p in argdown:
if p['uses']:
exist = all((l in previous_labels) for l in p['uses'])
check = check and exist
if not check: return 0
previous_labels.append(p['label'])
return 1 if check else 0
def ad_redundant_prem(argdown):
if not argdown: return None
premises = [item['text'].strip() for item in argdown if not item['uses']]
check = len(premises)!=len(set(premises))
return 1 if check else 0
def ad_petitio(argdown):
if not argdown: return None
premises = [item['text'].strip() for item in argdown if not item['uses']]
conclusions = [item['text'].strip() for item in argdown if item['uses']]
check = any(p==c for p in premises for c in conclusions)
return 1 if check else 0
def prem_non_used(argdown):
if not argdown: return None
used_total = [l for p in argdown if p['uses'] for l in p['uses']]
non_used = [p['label'] for p in argdown if not p['label'] in used_total]
return len(non_used)-1
#######################################
# Evaluating reason_statements #
#######################################
def s_valid_syntax(output:list,raw:str=""):
return 1 if output!=None or raw.strip()=="None" else 0
def s_not_verb_quotes(output:list,source):
l = [s for s in output if not s['text'] in source]
return len(l)
def s_ord_me_subsseq(output:list,source):
source = source
check = True
for reason in output:
text = reason['text']
check = check and (text in source)
if not check: return check
source = source.replace(text,"",1)
return check
#######################################
# Evaluating r-c-a consistency #
#######################################
# test: no reason statements is contained in a conclusion statement and vice versa
def reason_concl_mutually_exclusive(reasons,concl):
check = True
for r in reasons:
for c in concl:
check = bool(not c['text'] in r['text'] and not r['text'] in c['text'])
if not check: return check
return check
|