File size: 5,781 Bytes
0898363 8c863f0 f19b0c8 8c863f0 1c552db 8c863f0 1c552db 8c863f0 eda86ae 8c863f0 202eafe a77476d 8c863f0 2a850af 5d445d9 8c863f0 a77476d 8c863f0 f89a787 d414425 f89a787 a19d6e8 f89a787 8c863f0 f89a787 6e5e24d a19d6e8 f89a787 2cc9665 f89a787 8c863f0 1c552db 6ad333a 1c552db 8c863f0 1c552db 8c863f0 1c552db 8c863f0 a3f3361 54cab1d 8c863f0 1c552db 8c863f0 1c552db 8c863f0 d6e5112 8c863f0 d6e5112 8c863f0 ebacab7 8c863f0 ebacab7 8c863f0 7c684da 667e093 7e20959 667e093 8c863f0 667e093 8c863f0 2fadbe6 1a35520 8c863f0 be8ca19 7c684da fd59ae6 7c684da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
import cv2
def individual_channel_image(img_arr, channel= 'r', ax=None):
img_arr = img_arr[:,:,0:3]
if channel in ['r','red','Red']:
plot_arr = img_arr[:,:,0]
channel_name = 'Red'
cmap = 'Reds'
if channel in ['g','green','Green']:
plot_arr = img_arr[:,:,1]
channel_name = 'Green'
cmap = 'Greens'
if channel in ['b','blue','Blue']:
plot_arr = img_arr[:,:,2]
channel_name = 'Blue'
cmap = 'Blues'
if channel not in ['r','red','Red','g','green','Green','b','blue','Blue']:
plot_arr = img_arr
channel_name = 'Original'
if ax is None:
if channel_name == 'Original':
# plt.imshow(cv2.cvtColor(img_arr,cv2.COLOR_BGR2RGB))
plt.imshow(cv2.cvtColor(np.flip(img_arr,axis=-1),cv2.COLOR_BGR2RGB))
else:
plt.imshow(plot_arr, cmap = cmap)
plt.colorbar(orientation= 'vertical', shrink = 0.7, pad = 0.01, fraction = 0.046,)
plt.title('Image in the {} channel'.format(channel_name))
plt.show()
if ax is not None:
if channel_name == 'Original':
# ax.imshow(cv2.cvtColor(img_arr,cv2.COLOR_BGR2RGB))
ax.imshow(cv2.cvtColor(np.flip(img_arr, axis=-1),cv2.COLOR_BGR2RGB))
# ax.imshow(cv2.cvtColor(img_arr,cv2.COLOR_RGB2BGR))
else:
plot = ax.imshow(plot_arr, cmap = cmap)
plt.colorbar(plot, orientation= 'vertical', ax = ax, fraction = 0.046,)
# plt.colorbar(orientiation= 'vertical', shrink = 0.7, pad = 0.1)
ax.set_title('Image in the {} channel'.format(channel_name))
def individual_channel_image_final(img_arr, channel='Red'):
if channel in ['Red','Green','Blue']:
fig, ax = plt.subplots(figsize = (15,10))
individual_channel_image(img_arr, channel= channel)
plt.tight_layout()
plt.show()
fig.canvas.draw()
image_array = np.array(fig.canvas.renderer.buffer_rgba())
return image_array
if channel in ['All']:
fig, ax = plt.subplots(2,2, figsize = (12,10))
individual_channel_image(img_arr, channel='r', ax=ax[0,0])
individual_channel_image(img_arr, channel='g', ax=ax[0,1])
individual_channel_image(img_arr, channel='b', ax=ax[1,0])
individual_channel_image(img_arr, channel='full', ax=ax[1,1])
plt.tight_layout()
plt.show()
fig.canvas.draw()
image_array = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image_array
def channel_distribution_plotter(img_array):
img_array = img_array[:,:,:3] #Not considering the A channel, if it's a RGBA image.
fig, ax = plt.subplots(figsize=(8,8))
plt.yticks([])
plt.xticks([])
plt.subplot(2,2,1)
plt.hist(img_array[:,:,0].ravel(),bins=256,color='red');
plt.title("Red Channel")
plt.subplot(2,2,2)
plt.hist(img_array[:,:,1].ravel(),bins=256,color='green');
plt.title("Green Channel")
plt.subplot(2,2,3)
plt.hist(img_array[:,:,2].ravel(),bins=256,color='blue');
plt.title("Blue Channel")
plt.subplot(2,2,4)
plt.imshow(cv2.cvtColor(np.flip(img_array, axis=-1),cv2.COLOR_BGR2RGB))
# plt.imshow(cv2.cvtColor(img_array,cv2.COLOR_RGB2BGR))
plt.title("Original Image")
plt.suptitle("Pixel values distribution in each channel\nx-axis: pixel values, y-axis: number of pixels")
plt.tight_layout()
plt.show()
fig.canvas.draw()
image_array = np.array(fig.canvas.renderer.buffer_rgba())
return image_array
def which_channel_dominates(img_arr, original_image_plot = 'yes', original_image_opacity = 0.3, channel_opacity = 0.7):
cmap = mcolors.ListedColormap(['red', 'green', 'blue', 'white', 'black', 'gray'])
img_arr = img_arr[:,:,:3]
red_channel = img_arr[:,:,0]
green_channel = img_arr[:,:,1]
blue_channel = img_arr[:,:,2]
print("Red channel max. = ", np.max(red_channel), "Green max. = ", np.max(green_channel), "Blue max. = ",np.max(blue_channel))
which_channel_dominates = np.zeros((img_arr.shape[0],img_arr.shape[1]))
red_greater_green = np.greater(red_channel,green_channel)
red_greater_blue = np.greater(red_channel,blue_channel)
green_greater_blue = np.greater(green_channel,blue_channel)
#Red is greatest if red is greater than green and blue
which_channel_dominates[(red_greater_green & red_greater_blue)] = 1
which_channel_dominates[green_greater_blue & (~red_greater_green)] = 2
which_channel_dominates[~green_greater_blue & (~red_greater_blue)] = 3
which_channel_dominates[(red_channel == green_channel) & (red_channel == blue_channel)] = 6
which_channel_dominates[(red_channel == 255) & (blue_channel == 255) & (green_channel == 255)] = 4
which_channel_dominates[(red_channel == 0) & (blue_channel == 0) & (green_channel == 0)] = 5
print("Unique elements of channel dominat array are: - ",np.unique(which_channel_dominates))
#Map the color code to the image
fig, ax = plt.subplots(figsize=(8,8))
if original_image_plot == 'yes':
plt.imshow(cv2.cvtColor(np.flip(img_arr, axis=-1),cv2.COLOR_BGR2RGB), alpha=original_image_opacity)
plot = plt.imshow(which_channel_dominates, cmap=cmap, alpha=channel_opacity)
#Customize the ticks of the colorbar
plt.colorbar(plot, orientation='vertical',
ticks = [],
fraction=0.032,
pad=0.04,
label='Dominant Color Channel'
)
text = "Which channel dominates in the image below?\nWhite : R=G=B=255, Black : R=G=B=0\nGray : 0 < R=G=B< 255"
plt.title(text)
fig.canvas.draw()
# plt.plot()
image_array = np.array(fig.canvas.renderer.buffer_rgba())
return image_array |