File size: 4,154 Bytes
7b850f8 c50e492 7b850f8 c50e492 7b850f8 c50e492 7b850f8 1a40686 c50e492 1a40686 c50e492 7b850f8 c50e492 7b850f8 c50e492 7b850f8 c50e492 7b850f8 c50e492 1a40686 c50e492 1a40686 c50e492 1a40686 c50e492 1a40686 c50e492 1a40686 c50e492 1a40686 c50e492 1a40686 c50e492 1a40686 c50e492 1a40686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import logging
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
# from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_cohere import CohereEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
# from langchain.llms import Ollama
from langchain_groq import ChatGroq
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Function to extract text from PDF files
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to split the extracted text into chunks
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to create a FAISS vectorstore
# def get_vectorstore(text_chunks):
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# return vectorstore
def get_vectorstore(text_chunks):
cohere_api_key = os.getenv("COHERE_API_KEY")
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
# Function to set up the conversational retrieval chain
def get_conversation_chain(vectorstore):
try:
# llm = Ollama(model="llama3.2:1b")
llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5)
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
logging.info("Conversation chain created successfully.")
return conversation_chain
except Exception as e:
logging.error(f"Error creating conversation chain: {e}")
st.error("An error occurred while setting up the conversation chain.")
# Handle user input
def handle_userinput(user_question):
if st.session_state.conversation is not None:
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(f"*User:* {message.content}")
else:
st.write(f"*Bot:* {message.content}")
else:
st.warning("Please process the documents first.")
# Main function to run the Streamlit app
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
main()
|