File size: 50,545 Bytes
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba55edb
 
 
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
ba55edb
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba55edb
 
 
 
 
 
 
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
import logging
import traceback
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from PIL import Image

class SceneAnalysisCoordinator:
    """
    負責整個場景分析流程的協調和控制邏輯,包含主要的分析流程、
    處理無檢測結果的回退邏輯,以及多源分析結果的整合。
    """

    def __init__(self, component_initializer, scene_scoring_engine, landmark_processing_manager,
                 scene_confidence_threshold: float = 0.6):
        """
        初始化場景分析協調器。

        Args:
            component_initializer: 組件初始化器實例
            scene_scoring_engine: 場景評分引擎實例
            landmark_processing_manager: 地標處理管理器實例
            scene_confidence_threshold: 場景置信度閾值
        """
        self.logger = logging.getLogger(__name__)
        self.component_initializer = component_initializer
        self.scene_scoring_engine = scene_scoring_engine
        self.landmark_processing_manager = landmark_processing_manager
        self.scene_confidence_threshold = scene_confidence_threshold

        # 獲取必要的組件和數據
        self.spatial_analyzer = component_initializer.get_component('spatial_analyzer')
        self.descriptor = component_initializer.get_component('descriptor')
        self.scene_describer = component_initializer.get_component('scene_describer')
        self.clip_analyzer = component_initializer.get_component('clip_analyzer')
        self.llm_enhancer = component_initializer.get_component('llm_enhancer')

        self.scene_types = component_initializer.get_data_structure('SCENE_TYPES')

        # 從組件初始化器獲取功能開關狀態
        self.use_clip = component_initializer.use_clip
        self.use_llm = component_initializer.use_llm
        self.enable_landmark = component_initializer.enable_landmark

    def analyze(self, detection_result: Any, lighting_info: Optional[Dict] = None,
                class_confidence_threshold: float = 0.25, scene_confidence_threshold: float = 0.6,
                enable_landmark: bool = True, places365_info: Optional[Dict] = None) -> Dict:
        """
        分析檢測結果以確定場景類型並提供理解。

        Args:
            detection_result: 來自 YOLOv8 或類似系統的檢測結果
            lighting_info: 可選的照明條件分析結果
            class_confidence_threshold: 考慮物體的最小置信度
            scene_confidence_threshold: 確定場景的最小置信度
            enable_landmark: 是否為此次運行啟用地標檢測和識別
            places365_info: 可選的 Places365 場景分類結果

        Returns:
            包含場景分析結果的字典
        """
        current_run_enable_landmark = enable_landmark
        self.logger.info(f"DIAGNOSTIC (SceneAnalyzer.analyze): Called with current_run_enable_landmark={current_run_enable_landmark}")
        self.logger.debug(f"SceneAnalyzer received lighting_info type: {type(lighting_info)}")
        self.logger.debug(f"SceneAnalyzer lighting_info source: {lighting_info.get('source', 'unknown') if isinstance(lighting_info, dict) else 'not_dict'}")

        # 記錄 Places365 資訊
        if places365_info:
            self.logger.info(f"DIAGNOSTIC: Places365 info received - scene: {places365_info.get('scene_label', 'unknown')}, "
                           f"mapped: {places365_info.get('mapped_scene_type', 'unknown')}, "
                           f"confidence: {places365_info.get('confidence', 0.0):.3f}")

        # 同步 enable_landmark 狀態到子組件(為此次分析運行)
        self._sync_landmark_status_to_components(current_run_enable_landmark)

        # 提取和處理原始圖像
        original_image_pil, image_dims_val = self._extract_image_info(detection_result)

        # 處理無 YOLO 檢測結果的情況
        no_yolo_detections = self._check_no_yolo_detections(detection_result)

        if no_yolo_detections:
            return self._handle_no_yolo_detections(
                original_image_pil, image_dims_val, current_run_enable_landmark,
                lighting_info, places365_info
            )

        # 主處理流程(有 YOLO 檢測結果)
        return self._handle_main_analysis_flow(
            detection_result, original_image_pil, image_dims_val,
            class_confidence_threshold, scene_confidence_threshold,
            current_run_enable_landmark, lighting_info, places365_info
        )

    def _sync_landmark_status_to_components(self, current_run_enable_landmark: bool):
        """同步地標狀態到所有相關組件。"""
        # 更新場景評分引擎
        self.scene_scoring_engine.update_enable_landmark_status(current_run_enable_landmark)

        # 更新地標處理管理器
        self.landmark_processing_manager.update_enable_landmark_status(current_run_enable_landmark)

        # 更新其他組件的地標狀態
        for component_name in ['scene_describer', 'clip_analyzer', 'landmark_classifier']:
            component = self.component_initializer.get_component(component_name)
            if component and hasattr(component, 'enable_landmark'):
                component.enable_landmark = current_run_enable_landmark

        # 更新實例狀態
        self.enable_landmark = current_run_enable_landmark

    def _extract_image_info(self, detection_result) -> Tuple[Optional[Image.Image], Optional[Tuple[int, int]]]:
        """從檢測結果中提取圖像信息。"""
        original_image_pil = None
        image_dims_val = None  # 將是 (width, height)

        if (detection_result is not None and hasattr(detection_result, 'orig_img') and
            detection_result.orig_img is not None):
            if isinstance(detection_result.orig_img, np.ndarray):
                try:
                    img_array = detection_result.orig_img
                    if img_array.ndim == 3 and img_array.shape[2] == 4:  # RGBA
                        img_array = img_array[:, :, :3]  # 轉換為 RGB
                    if img_array.ndim == 2:  # 灰度
                        original_image_pil = Image.fromarray(img_array).convert("RGB")
                    else:  # 假設 RGB 或 BGR(如果源是 cv2 BGR,PIL 在 fromarray 時會處理 BGR->RGB,但明確處理更好)
                        original_image_pil = Image.fromarray(img_array)

                    if hasattr(original_image_pil, 'mode') and original_image_pil.mode == 'BGR':  # 明確將 OpenCV 的 BGR 轉換為 PIL 的 RGB
                        original_image_pil = original_image_pil.convert('RGB')

                    image_dims_val = (original_image_pil.width, original_image_pil.height)
                except Exception as e:
                    self.logger.warning(f"Error converting NumPy orig_img to PIL: {e}")
            elif hasattr(detection_result.orig_img, 'size') and callable(getattr(detection_result.orig_img, 'convert', None)):
                original_image_pil = detection_result.orig_img.copy().convert("RGB")  # 確保 RGB
                image_dims_val = original_image_pil.size
            else:
                self.logger.warning(f"detection_result.orig_img (type: {type(detection_result.orig_img)}) is not a recognized NumPy array or PIL Image.")
        else:
            self.logger.warning("detection_result.orig_img not available. Image-based analysis will be limited.")

        return original_image_pil, image_dims_val

    def _check_no_yolo_detections(self, detection_result) -> bool:
        """檢查是否沒有 YOLO 檢測結果。"""
        return (detection_result is None or
                not hasattr(detection_result, 'boxes') or
                not hasattr(detection_result.boxes, 'xyxy') or
                len(detection_result.boxes.xyxy) == 0)

    def _handle_no_yolo_detections(self, original_image_pil, image_dims_val,
                                 current_run_enable_landmark, lighting_info, places365_info) -> Dict:
        """處理無 YOLO 檢測結果的情況。"""
        tried_landmark_detection = False
        landmark_detection_result = None

        # 嘗試地標檢測
        if original_image_pil and self.use_clip and current_run_enable_landmark:
            landmark_detection_result = self._attempt_landmark_detection_no_yolo(
                original_image_pil, image_dims_val, lighting_info
            )
            tried_landmark_detection = True

            if landmark_detection_result:
                return landmark_detection_result

        # 如果地標檢測失敗或未嘗試,使用 CLIP 進行一般場景分析
        if not landmark_detection_result and self.use_clip and original_image_pil:
            clip_fallback_result = self._attempt_clip_fallback_analysis(
                original_image_pil, image_dims_val, current_run_enable_landmark, lighting_info
            )
            if clip_fallback_result:
                return clip_fallback_result

        # 最終回退邏輯
        return self._get_final_fallback_result(places365_info, lighting_info)

    def _attempt_landmark_detection_no_yolo(self, original_image_pil, image_dims_val, lighting_info) -> Optional[Dict]:
        """在無 YOLO 檢測的情況下嘗試地標檢測。"""
        try:
            # 初始化地標分類器(如果需要)
            landmark_classifier = self.component_initializer.get_component('landmark_classifier')
            if not landmark_classifier and self.clip_analyzer:
                if hasattr(self.clip_analyzer, 'get_clip_instance'):
                    try:
                        model, preprocess, device = self.clip_analyzer.get_clip_instance()
                        landmark_classifier = CLIPZeroShotClassifier(device=device)
                        self.landmark_processing_manager.set_landmark_classifier(landmark_classifier)
                        self.logger.info("Initialized landmark classifier with shared CLIP model")
                    except Exception as e:
                        self.logger.warning(f"Could not initialize landmark classifier: {e}")
                        return None

            if landmark_classifier:
                self.logger.info("Attempting landmark detection with no YOLO boxes")
                landmark_results_no_yolo = landmark_classifier.intelligent_landmark_search(
                    original_image_pil, yolo_boxes=None, base_threshold=0.2  # 略微降低閾值,提高靈敏度
                )

                # 確保在無地標場景時返回有效結果
                if landmark_results_no_yolo is None:
                    landmark_results_no_yolo = {"is_landmark_scene": False, "detected_landmarks": []}

                if (landmark_results_no_yolo and landmark_results_no_yolo.get("is_landmark_scene", False)):
                    return self._process_landmark_detection_result(
                        landmark_results_no_yolo, image_dims_val, lighting_info
                    )
        except Exception as e:
            self.logger.error(f"Error in landmark-only detection path (analyze method): {e}")
            traceback.print_exc()

        return None

    def _process_landmark_detection_result(self, landmark_results, image_dims_val, lighting_info) -> Dict:
        """處理地標檢測結果並生成最終輸出。"""
        primary_landmark = landmark_results.get("primary_landmark")

        # 放寬閾值條件,以便捕獲更多潛在地標
        if not primary_landmark or primary_landmark.get("confidence", 0) <= 0.25:
            return None

        detected_objects_from_landmarks_list = []
        w_img, h_img = image_dims_val if image_dims_val else (1, 1)

        for lm_info_item in landmark_results.get("detected_landmarks", []):
            if lm_info_item.get("confidence", 0) > 0.25:  # 降低閾值與上面保持一致
                # 安全獲取 box 值,避免索引錯誤
                box = lm_info_item.get("box", [0, 0, w_img, h_img])
                if len(box) < 4:
                    box = [0, 0, w_img, h_img]

                # 計算中心點和標準化坐標
                center_x, center_y = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2
                norm_cx = center_x / w_img if w_img > 0 else 0.5
                norm_cy = center_y / h_img if h_img > 0 else 0.5

                # 決定地標類型
                landmark_type = "architectural"  # 預設類型
                landmark_id = lm_info_item.get("landmark_id", "")

                landmark_classifier = self.component_initializer.get_component('landmark_classifier')
                if (landmark_classifier and hasattr(landmark_classifier, '_determine_landmark_type') and landmark_id):
                    try:
                        landmark_type = landmark_classifier._determine_landmark_type(landmark_id)
                    except Exception as e:
                        self.logger.error(f"Error determining landmark type: {e}")
                else:
                    # 使用簡單的基於 ID 的啟發式方法推斷類型
                    landmark_id_lower = landmark_id.lower() if isinstance(landmark_id, str) else ""
                    if "natural" in landmark_id_lower or any(term in landmark_id_lower for term in ["mountain", "waterfall", "canyon", "lake"]):
                        landmark_type = "natural"
                    elif "monument" in landmark_id_lower or "memorial" in landmark_id_lower or "historical" in landmark_id_lower:
                        landmark_type = "monument"

                # 決定區域位置
                region = "center"  # 預設值
                if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_determine_region'):
                    try:
                        region = self.spatial_analyzer._determine_region(norm_cx, norm_cy)
                    except Exception as e:
                        self.logger.error(f"Error determining region: {e}")

                # 取得並補 location
                loc_lm = lm_info_item.get("location", "")
                if not loc_lm and landmark_id in ALL_LANDMARKS:
                    loc_lm = ALL_LANDMARKS[landmark_id].get("location", "")

                # 創建地標物體
                landmark_obj = {
                    "class_id": lm_info_item.get("landmark_id", f"LM_{lm_info_item.get('landmark_name','unk')}")[:15],
                    "class_name": lm_info_item.get("landmark_name", "Unknown Landmark"),
                    "confidence": lm_info_item.get("confidence", 0.0),
                    "box": box,
                    "center": (center_x, center_y),
                    "normalized_center": (norm_cx, norm_cy),
                    "size": (box[2] - box[0], box[3] - box[1]),
                    "normalized_size": (
                        (box[2] - box[0])/(w_img if w_img>0 else 1),
                        (box[3] - box[1])/(h_img if h_img>0 else 1)
                    ),
                    "area": (box[2] - box[0]) * (box[3] - box[1]),
                    "normalized_area": (
                        (box[2] - box[0]) * (box[3] - box[1])
                    ) / ((w_img*h_img) if w_img*h_img >0 else 1),
                    "is_landmark": True,
                    "landmark_id": landmark_id,
                    "location": loc_lm or "Unknown Location",
                    "region": region,
                    "year_built": lm_info_item.get("year_built", ""),
                    "architectural_style": lm_info_item.get("architectural_style", ""),
                    "significance": lm_info_item.get("significance", ""),
                    "landmark_type": landmark_type
                }
                detected_objects_from_landmarks_list.append(landmark_obj)

        if not detected_objects_from_landmarks_list:
            return None

        # 設定場景類型
        best_scene_val = "tourist_landmark"  # 預設
        if primary_landmark:
            try:
                lm_type = primary_landmark.get("landmark_type", "architectural")
                if lm_type and "natural" in lm_type.lower():
                    best_scene_val = "natural_landmark"
                elif lm_type and ("historical" in lm_type.lower() or "monument" in lm_type.lower()):
                    best_scene_val = "historical_monument"
            except Exception as e:
                self.logger.error(f"Error determining scene type from landmark type: {e}")

        # 確保場景類型有效
        if best_scene_val not in self.scene_types:
            best_scene_val = "tourist_landmark"  # 預設場景類型

        # 設定置信度
        scene_confidence = primary_landmark.get("confidence", 0.0) if primary_landmark else 0.0

        # 生成其他必要的分析結果
        region_analysis = self._generate_region_analysis(detected_objects_from_landmarks_list)

        functional_zones = self._generate_functional_zones(
            detected_objects_from_landmarks_list,
            best_scene_val
        )

        scene_description = self._generate_scene_description(
            best_scene_val, detected_objects_from_landmarks_list, scene_confidence,
            lighting_info, functional_zones, image_dims_val
        )

        enhanced_description = self._enhance_description_with_llm(
            scene_description, best_scene_val, detected_objects_from_landmarks_list,
            scene_confidence, lighting_info, functional_zones, landmark_results, image_dims_val
        )
        possible_activities = self._extract_possible_activities(detected_objects_from_landmarks_list, landmark_results)
        safety_concerns = []
        if self.descriptor and hasattr(self.descriptor, '_identify_safety_concerns'):
            safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_from_landmarks_list, best_scene_val)

        # 準備最終結果
        return {
            "scene_type": best_scene_val,
            "scene_name": self.scene_types.get(best_scene_val, {}).get("name", "Landmark"),
            "confidence": round(float(scene_confidence), 4),
            "description": scene_description,
            "enhanced_description": enhanced_description,
            "objects_present": detected_objects_from_landmarks_list,
            "object_count": len(detected_objects_from_landmarks_list),
            "regions": region_analysis,
            "possible_activities": possible_activities,
            "safety_concerns": safety_concerns,
            "functional_zones": functional_zones,
            "detected_landmarks": [lm for lm in detected_objects_from_landmarks_list if lm.get("is_landmark", False)],
            "primary_landmark": primary_landmark,
            "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
        }


    def _attempt_clip_fallback_analysis(self, original_image_pil, image_dims_val,
                                      current_run_enable_landmark, lighting_info) -> Optional[Dict]:
        """嘗試使用 CLIP 進行一般場景分析。"""
        try:
            clip_analysis_val = None
            if self.clip_analyzer and hasattr(self.clip_analyzer, 'analyze_image'):
                try:
                    clip_analysis_val = self.clip_analyzer.analyze_image(
                        original_image_pil,
                        enable_landmark=current_run_enable_landmark
                    )
                except Exception as e:
                    self.logger.error(f"Error in CLIP analysis: {e}")

            scene_type_llm = "llm_inferred_no_yolo"
            confidence_llm = 0.0

            if clip_analysis_val and isinstance(clip_analysis_val, dict):
                top_scene = clip_analysis_val.get("top_scene")
                if top_scene and isinstance(top_scene, tuple) and len(top_scene) >= 2:
                    confidence_llm = top_scene[1]
                    if isinstance(top_scene[0], str):
                        scene_type_llm = top_scene[0]

            desc_llm = "Primary object detection did not yield results. This description is based on overall image context."

            w_llm, h_llm = image_dims_val if image_dims_val else (1, 1)
            enhanced_desc_llm = self._enhance_no_detection_description(
                desc_llm, scene_type_llm, confidence_llm, lighting_info,
                clip_analysis_val, current_run_enable_landmark, w_llm, h_llm
            )

            # 安全類型轉換
            try:
                confidence_float = float(confidence_llm)
            except (ValueError, TypeError):
                confidence_float = 0.0

            # 確保增強描述不為空
            if not enhanced_desc_llm or not isinstance(enhanced_desc_llm, str):
                enhanced_desc_llm = desc_llm

            # 返回結果
            return {
                "scene_type": scene_type_llm,
                "confidence": round(confidence_float, 4),
                "description": desc_llm,
                "enhanced_description": enhanced_desc_llm,
                "objects_present": [],
                "object_count": 0,
                "regions": {},
                "possible_activities": [],
                "safety_concerns": [],
                "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
            }
        except Exception as e:
            self.logger.error(f"Error in CLIP no-detection fallback (analyze method): {e}")
            traceback.print_exc()
            return None

    def _get_final_fallback_result(self, places365_info, lighting_info) -> Dict:
        """獲取最終的回退結果。"""
        # 檢查 Places365 是否提供有用的場景信息(即使沒有 YOLO 檢測)
        fallback_scene_type = "unknown"
        fallback_confidence = 0.0
        fallback_description = "No objects were detected in the image, and contextual analysis could not be performed or failed."

        if places365_info and places365_info.get('confidence', 0) > 0.3:
            fallback_scene_type = places365_info.get('mapped_scene_type', 'unknown')
            fallback_confidence = places365_info.get('confidence', 0.0)
            fallback_description = f"Scene appears to be {places365_info.get('scene_label', 'an unidentified location')} based on overall visual context."

        return {
            "scene_type": fallback_scene_type,
            "confidence": fallback_confidence,
            "description": fallback_description,
            "enhanced_description": "The image analysis system could not detect any recognizable objects or landmarks in this image.",
            "objects_present": [],
            "object_count": 0,
            "regions": {},
            "possible_activities": [],
            "safety_concerns": [],
            "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
        }

    def _handle_main_analysis_flow(self, detection_result, original_image_pil, image_dims_val,
                                 class_confidence_threshold, scene_confidence_threshold,
                                 current_run_enable_landmark, lighting_info, places365_info) -> Dict:
        """處理主要的分析流程(有 YOLO 檢測結果)。"""
        # 更新類別名稱映射
        if hasattr(detection_result, 'names'):
            if hasattr(self.spatial_analyzer, 'class_names'):
                self.spatial_analyzer.class_names = detection_result.names

        # 提取檢測到的物體
        detected_objects_main = self.spatial_analyzer._extract_detected_objects(
            detection_result,
            confidence_threshold=class_confidence_threshold
        )

        if not detected_objects_main:
            return {
                "scene_type": "unknown", "confidence": 0.0,
                "description": "No objects detected with sufficient confidence by the primary vision system.",
                "objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
                "safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
            }

        # 空間分析
        region_analysis_val = self.spatial_analyzer._analyze_regions(detected_objects_main)

        if current_run_enable_landmark:
            self.logger.info("Using landmark detection logic for YOLO scene")
            return self._handle_no_yolo_detections(
                original_image_pil, image_dims_val, current_run_enable_landmark,
                lighting_info, places365_info
            )

        # 地標處理和整合
        landmark_objects_identified = []
        landmark_specific_activities = []
        final_landmark_info = {}

        # 如果當前運行禁用地標檢測,清理地標物體
        if not current_run_enable_landmark:
            detected_objects_main = [obj for obj in detected_objects_main if not obj.get("is_landmark", False)]
            final_landmark_info = {}

        # 計算場景分數並進行融合
        yolo_scene_scores = self.scene_scoring_engine.compute_scene_scores(
            detected_objects_main, spatial_analysis_results=region_analysis_val
        )

        clip_scene_scores = {}
        clip_analysis_results = None
        if self.use_clip and original_image_pil is not None:
            clip_analysis_results, clip_scene_scores = self._perform_clip_analysis(
                original_image_pil, current_run_enable_landmark, lighting_info
            )

        # 融合場景分數
        yolo_only_objects = [obj for obj in detected_objects_main if not obj.get("is_landmark")]
        num_yolo_detections = len(yolo_only_objects)
        avg_yolo_confidence = (sum(obj.get('confidence', 0.0) for obj in yolo_only_objects) / num_yolo_detections
                              if num_yolo_detections > 0 else 0.0)

        scene_scores_fused = self.scene_scoring_engine.fuse_scene_scores(
            yolo_scene_scores, clip_scene_scores,
            num_yolo_detections=num_yolo_detections,
            avg_yolo_confidence=avg_yolo_confidence,
            lighting_info=lighting_info,
            places365_info=places365_info
        )

        # 確定最終場景類型
        final_best_scene, final_scene_confidence = self.scene_scoring_engine.determine_scene_type(scene_scores_fused)

        # 處理禁用地標檢測時的替代場景類型
        if (not current_run_enable_landmark and
            final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]):
            alt_scene_type = self.landmark_processing_manager.get_alternative_scene_type(
                final_best_scene, detected_objects_main, scene_scores_fused
            )
            final_best_scene = alt_scene_type
            final_scene_confidence = scene_scores_fused.get(alt_scene_type, 0.6)

        # 生成最終的描述性內容
        final_result = self._generate_final_result(
            final_best_scene, final_scene_confidence, detected_objects_main,
            landmark_specific_activities, landmark_objects_identified, final_landmark_info,
            region_analysis_val, lighting_info, scene_scores_fused, current_run_enable_landmark,
            clip_analysis_results, image_dims_val, scene_confidence_threshold
        )

        return final_result

    def _perform_clip_analysis(self, original_image_pil, current_run_enable_landmark, lighting_info) -> Tuple[Optional[Dict], Dict]:
        """執行 CLIP 分析。"""
        clip_analysis_results = None
        clip_scene_scores = {}

        try:
            clip_analysis_results = self.clip_analyzer.analyze_image(
                original_image_pil,
                enable_landmark=current_run_enable_landmark,
                exclude_categories=["landmark", "tourist", "monument", "tower", "attraction", "scenic", "historical", "famous"] if not current_run_enable_landmark else None
            )

            if isinstance(clip_analysis_results, dict):
                clip_scene_scores = clip_analysis_results.get("scene_scores", {})

                # 如果禁用地標檢測,再次過濾
                if not current_run_enable_landmark:
                    clip_scene_scores = {k: v for k, v in clip_scene_scores.items()
                                       if not any(kw in k.lower() for kw in ["landmark", "monument", "tourist"])}
                    if "cultural_analysis" in clip_analysis_results:
                        del clip_analysis_results["cultural_analysis"]
                    if ("top_scene" in clip_analysis_results and
                        any(term in clip_analysis_results.get("top_scene", ["unknown", 0.0])[0].lower()
                            for term in ["landmark", "monument", "tourist"])):
                        non_lm_cs = sorted([item for item in clip_scene_scores.items() if item[1] > 0],
                                         key=lambda x: x[1], reverse=True)
                        clip_analysis_results["top_scene"] = non_lm_cs[0] if non_lm_cs else ("unknown", 0.0)

                # 處理照明信息回退
                if (not lighting_info and "lighting_condition" in clip_analysis_results):
                    lt, lc = clip_analysis_results.get("lighting_condition", ("unknown", 0.0))
                    lighting_info = {"time_of_day": lt, "confidence": lc, "source": "CLIP_fallback"}
        except Exception as e:
            self.logger.error(f"Error in main CLIP analysis for YOLO path (analyze method): {e}")

        return clip_analysis_results, clip_scene_scores

    def _generate_final_result(self, final_best_scene, final_scene_confidence, detected_objects_main,
                             landmark_specific_activities, landmark_objects_identified, final_landmark_info,
                             region_analysis_val, lighting_info, scene_scores_fused, current_run_enable_landmark,
                             clip_analysis_results, image_dims_val, scene_confidence_threshold) -> Dict:
        """生成最終的分析結果。"""
        # 生成最終的描述性內容(活動、安全、區域)
        final_activities = []

        # 通用活動推斷
        generic_activities = []
        if self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
            generic_activities = self.descriptor._infer_possible_activities(
                final_best_scene, detected_objects_main,
                enable_landmark=current_run_enable_landmark, scene_scores=scene_scores_fused
            )

        # 優先處理策略:使用特定地標活動,不足時才從通用活動補充
        if landmark_specific_activities:
            # 如果有特定活動,優先保留,去除與特定活動重複的通用活動
            unique_generic_activities = [act for act in generic_activities if act not in landmark_specific_activities]

            # 如果特定活動少於3個,從通用活動中補充
            if len(landmark_specific_activities) < 3:
                # 補充通用活動但總數不超過7個
                supplement_count = min(3 - len(landmark_specific_activities), len(unique_generic_activities))
                if supplement_count > 0:
                    final_activities.extend(unique_generic_activities[:supplement_count])
        else:
            # 若無特定活動,則使用所有通用活動
            final_activities.extend(generic_activities)

        # 去重並排序,但確保特定地標活動保持在前面
        final_activities_set = set(final_activities)
        final_activities = []

        # 先加入特定地標活動(按原順序)
        for activity in landmark_specific_activities:
            if activity in final_activities_set:
                final_activities.append(activity)
                final_activities_set.remove(activity)

        # 再加入通用活動(按字母排序)
        final_activities.extend(sorted(list(final_activities_set)))

        # 安全問題識別
        final_safety_concerns = []
        if self.descriptor and hasattr(self.descriptor, '_identify_safety_concerns'):
            final_safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_main, final_best_scene)

        # 功能區域識別
        final_functional_zones = {}
        if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_functional_zones'):
            general_zones = self.spatial_analyzer._identify_functional_zones(detected_objects_main, final_best_scene)
            final_functional_zones.update(general_zones)

        # 地標相關的功能區域
        if landmark_objects_identified and self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_landmark_zones'):
            landmark_zones = self.spatial_analyzer._identify_landmark_zones(landmark_objects_identified)
            final_functional_zones.update(landmark_zones)

        # 如果當前運行禁用地標檢測,過濾相關內容
        if not current_run_enable_landmark:
            final_functional_zones = {
                        str(k): v
                        for k, v in final_functional_zones.items()
                        if (not str(k).isdigit())
                        and (not any(kw in str(k).lower() for kw in ["landmark", "monument", "viewing", "tourist"]))
                    }


            current_activities_temp = [act for act in final_activities
                                     if not any(kw in act.lower() for kw in ["sightsee", "photograph", "tour", "histor", "landmark", "monument", "cultur"])]
            final_activities = current_activities_temp
            if not final_activities and self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
                final_activities = self.descriptor._infer_possible_activities("generic_street_view", detected_objects_main, enable_landmark=False)

        # 創建淨化的光線資訊,避免不合理的時間描述
        lighting_info_clean = None
        if lighting_info:
            lighting_info_clean = {
                "is_indoor": lighting_info.get("is_indoor"),
                "confidence": lighting_info.get("confidence", 0.0),
                "time_of_day": lighting_info.get("time_of_day", "unknown")
            }

        # 生成場景描述
        base_scene_description = self._generate_scene_description(
            final_best_scene, detected_objects_main, final_scene_confidence,
            lighting_info_clean, final_functional_zones, image_dims_val
        )

        # 清理地標引用(如果禁用地標檢測)
        if not current_run_enable_landmark:
            base_scene_description = self.landmark_processing_manager.remove_landmark_references(base_scene_description)

        # LLM 增強
        enhanced_final_description = self._enhance_final_description(
            base_scene_description, final_best_scene, final_scene_confidence, detected_objects_main,
            final_functional_zones, final_activities, final_safety_concerns, lighting_info,
            clip_analysis_results, current_run_enable_landmark, image_dims_val, final_landmark_info
        )

        # 清理增強描述的地標引用
        if not current_run_enable_landmark:
            enhanced_final_description = self.landmark_processing_manager.remove_landmark_references(enhanced_final_description)

        # 構建最終輸出字典
        output_result = {
            "scene_type": final_best_scene if final_scene_confidence >= scene_confidence_threshold else "unknown",
            "scene_name": (self.scene_types.get(final_best_scene, {}).get("name", "Unknown Scene")
                          if final_scene_confidence >= scene_confidence_threshold else "Unknown Scene"),
            "confidence": round(float(final_scene_confidence), 4),
            "description": base_scene_description,
            "enhanced_description": enhanced_final_description,
            "objects_present": [{"class_id": obj.get("class_id", -1),
                               "class_name": obj.get("class_name", "unknown"),
                               "confidence": round(float(obj.get("confidence", 0.0)), 4)}
                              for obj in detected_objects_main],
            "object_count": len(detected_objects_main),
            "regions": region_analysis_val,
            "possible_activities": final_activities,
            "safety_concerns": final_safety_concerns,
            "functional_zones": final_functional_zones,
            "lighting_conditions": lighting_info if lighting_info else {"time_of_day": "unknown", "confidence": 0.0, "source": "default"}
        }

        # 添加替代場景
        if self.descriptor and hasattr(self.descriptor, '_get_alternative_scenes'):
            output_result["alternative_scenes"] = self.descriptor._get_alternative_scenes(
                scene_scores_fused, scene_confidence_threshold, top_k=2
            )

        # 添加地標相關信息
        if current_run_enable_landmark and final_landmark_info and final_landmark_info.get("detected_landmarks"):
            output_result.update(final_landmark_info)
            if final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]:
                output_result["scene_source"] = "landmark_detection"
        elif not current_run_enable_landmark:
            for key_rm in ["detected_landmarks", "primary_landmark", "detailed_landmarks", "scene_source"]:
                if key_rm in output_result:
                    del output_result[key_rm]

        # 添加 CLIP 分析結果
        if clip_analysis_results and isinstance(clip_analysis_results, dict) and "error" not in clip_analysis_results:
            top_scene_clip = clip_analysis_results.get("top_scene", ("unknown", 0.0))
            output_result["clip_analysis"] = {
                "top_scene": (top_scene_clip[0], round(float(top_scene_clip[1]), 4)),
                "cultural_analysis": clip_analysis_results.get("cultural_analysis", {}) if current_run_enable_landmark else {}
            }

        return output_result

    # 輔助方法
    def _generate_region_analysis(self, detected_objects):
        """生成區域分析結果。"""
        if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_analyze_regions'):
            try:
                return self.spatial_analyzer._analyze_regions(detected_objects)
            except Exception as e:
                self.logger.error(f"Error analyzing regions: {e}")
        return {}

    def _generate_functional_zones(self, detected_objects, scene_type):
        """
        生成功能區域。
        由於原本直接呼叫 _identify_landmark_zones,導致非地標場景必定回 {}。
        這裡改為呼叫 _identify_functional_zones,並帶入 scene_type。
        """
        try:
            # 如果 spatial_analyzer 可以識別 functional zones,就調用它
            if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_functional_zones'):
                return self.spatial_analyzer._identify_functional_zones(detected_objects, scene_type)
        except Exception as e:
            self.logger.error(f"Error identifying functional zones: {e}")
            self.logger.error(traceback.format_exc())
        return {}


    def _generate_scene_description(self, scene_type, detected_objects, confidence,
                                  lighting_info, functional_zones, image_dims):
        """生成場景描述。"""
        if self.scene_describer and hasattr(self.scene_describer, 'generate_description'):
            try:
                for obj in detected_objects:
                    if obj.get("is_landmark"):
                        loc_obj = obj.get("location", "")
                        lm_id_obj = obj.get("landmark_id")
                        if (not loc_obj) and lm_id_obj and lm_id_obj in ALL_LANDMARKS:
                            obj["location"] = ALL_LANDMARKS[lm_id_obj].get("location", "")

                return self.scene_describer.generate_description(
                    scene_type=scene_type,
                    detected_objects=detected_objects,
                    confidence=confidence,
                    lighting_info=lighting_info,
                    functional_zones=list(functional_zones.keys()) if functional_zones else [],
                    enable_landmark=self.enable_landmark,
                    scene_scores={scene_type: confidence},
                    spatial_analysis={},
                    image_dimensions=image_dims
                )
            except Exception as e:
                self.logger.error(f"Error generating scene description: {e}")
        return f"A {scene_type} scene."

    def _enhance_description_with_llm(self, scene_description, scene_type, detected_objects,
                                    confidence, lighting_info, functional_zones, landmark_results, image_dims):
        """使用 LLM 增強描述。"""
        if not self.use_llm or not self.llm_enhancer:
            return scene_description

        try:
            prominent_objects_detail = ""
            if self.scene_describer and hasattr(self.scene_describer, 'format_object_list_for_description'):
                try:
                    prominent_objects_detail = self.scene_describer.format_object_list_for_description(
                        detected_objects[:min(1, len(detected_objects))]
                    )
                except Exception as e:
                    self.logger.error(f"Error formatting object list: {e}")

            w_img, h_img = image_dims if image_dims else (1, 1)
            scene_data_llm = {
                "original_description": scene_description,
                "scene_type": scene_type,
                "scene_name": self.scene_types.get(scene_type, {}).get("name", "Landmark"),
                "detected_objects": detected_objects,
                "object_list": "landmark",
                "confidence": confidence,
                "lighting_info": lighting_info,
                "functional_zones": functional_zones,
                "clip_analysis": landmark_results.get("clip_analysis_on_full_image", {}),
                "enable_landmark": True,
                "image_width": w_img,
                "image_height": h_img,
                "prominent_objects_detail": prominent_objects_detail
            }

            return self.llm_enhancer.enhance_description(scene_data_llm)
        except Exception as e:
            self.logger.error(f"Error enhancing description with LLM: {e}")
            traceback.print_exc()
            return scene_description

    def _enhance_no_detection_description(self, desc, scene_type, confidence, lighting_info,
                                        clip_analysis, enable_landmark, width, height):
        """增強無檢測結果的描述。"""
        if not self.use_llm or not self.llm_enhancer:
            return desc

        try:
            clip_analysis_safe = {}
            if isinstance(clip_analysis, dict):
                clip_analysis_safe = clip_analysis

            scene_data_llm = {
                "original_description": desc,
                "scene_type": scene_type,
                "scene_name": "Contextually Inferred (No Detections)",
                "detected_objects": [],
                "object_list": "general ambiance",
                "confidence": confidence,
                "lighting_info": lighting_info or {"time_of_day": "unknown", "confidence": 0.0},
                "clip_analysis": clip_analysis_safe,
                "enable_landmark": enable_landmark,
                "image_width": width,
                "image_height": height,
                "prominent_objects_detail": "the overall visual context"
            }

            if hasattr(self.llm_enhancer, 'enhance_description'):
                try:
                    enhanced = self.llm_enhancer.enhance_description(scene_data_llm)
                    if enhanced and len(enhanced.strip()) >= 20:
                        return enhanced
                except Exception as e:
                    self.logger.error(f"Error in enhance_description: {e}")

            if hasattr(self.llm_enhancer, 'handle_no_detection'):
                try:
                    return self.llm_enhancer.handle_no_detection(clip_analysis_safe)
                except Exception as e:
                    self.logger.error(f"Error in handle_no_detection: {e}")
        except Exception as e:
            self.logger.error(f"Error preparing data for LLM enhancement: {e}")
            traceback.print_exc()

        return desc

    def _extract_possible_activities(self, detected_objects, landmark_results):
        """提取可能的活動。"""
        possible_activities = ["Sightseeing"]

        # 檢查是否有主要地標活動從 CLIP 分析結果中獲取
        primary_landmark_activities = landmark_results.get("primary_landmark_activities", [])

        if primary_landmark_activities:
            self.logger.info(f"Using {len(primary_landmark_activities)} landmark-specific activities")
            possible_activities = primary_landmark_activities
        else:
            # 從檢測到的地標中提取特定活動
            landmark_specific_activities = self.landmark_processing_manager.extract_landmark_specific_activities(detected_objects)

            if landmark_specific_activities:
                possible_activities = list(set(landmark_specific_activities))  # 去重
                self.logger.info(f"Extracted {len(possible_activities)} activities from landmark data")
            else:
                # 回退到通用活動推斷
                if self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
                    try:
                        possible_activities = self.descriptor._infer_possible_activities(
                            "tourist_landmark",
                            detected_objects,
                            enable_landmark=True,
                            scene_scores={"tourist_landmark": 0.8}
                        )
                    except Exception as e:
                        self.logger.error(f"Error inferring possible activities: {e}")

        return possible_activities

    def _enhance_final_description(self, base_description, scene_type, scene_confidence, detected_objects,
                                 functional_zones, activities, safety_concerns, lighting_info,
                                 clip_analysis_results, enable_landmark, image_dims, landmark_info):
        """增強最終描述。"""
        if not self.use_llm or not self.llm_enhancer:
            return base_description

        try:
            obj_list_for_llm = ", ".join(sorted(list(set(
                obj["class_name"] for obj in detected_objects
                if obj.get("confidence", 0) > 0.4 and not obj.get("is_landmark")
            ))))

            if not obj_list_for_llm and enable_landmark and landmark_info.get("primary_landmark"):
                obj_list_for_llm = landmark_info["primary_landmark"].get("class_name", "a prominent feature")
            elif not obj_list_for_llm:
                obj_list_for_llm = "various visual elements"

            # 生成物體統計信息
            object_statistics = {}
            for obj in detected_objects:
                class_name = obj.get("class_name", "unknown")
                if class_name not in object_statistics:
                    object_statistics[class_name] = {
                        "count": 0,
                        "avg_confidence": 0.0,
                        "max_confidence": 0.0,
                        "instances": []
                    }

                stats = object_statistics[class_name]
                stats["count"] += 1
                stats["instances"].append(obj)
                stats["max_confidence"] = max(stats["max_confidence"], obj.get("confidence", 0.0))

            # 計算平均信心度
            for class_name, stats in object_statistics.items():
                if stats["count"] > 0:
                    total_conf = sum(inst.get("confidence", 0.0) for inst in stats["instances"])
                    stats["avg_confidence"] = total_conf / stats["count"]

            llm_scene_data = {
                "original_description": base_description,
                "scene_type": scene_type,
                "scene_name": self.scene_types.get(scene_type, {}).get("name", "Unknown Scene"),
                "detected_objects": detected_objects,
                "object_list": obj_list_for_llm,
                "object_statistics": object_statistics,
                "confidence": scene_confidence,
                "lighting_info": lighting_info,
                "functional_zones": functional_zones,
                "activities": activities,
                "safety_concerns": safety_concerns,
                "clip_analysis": clip_analysis_results if isinstance(clip_analysis_results, dict) else None,
                "enable_landmark": enable_landmark,
                "image_width": image_dims[0] if image_dims else None,
                "image_height": image_dims[1] if image_dims else None,
                "prominent_objects_detail": ""
            }

            # 添加顯著物體詳細信息
            if self.scene_describer and hasattr(self.scene_describer, 'get_prominent_objects') and hasattr(self.scene_describer, 'format_object_list_for_description'):
                try:
                    prominent_objects = self.scene_describer.get_prominent_objects(
                        detected_objects, min_prominence_score=0.1, max_categories_to_return=3, max_total_objects=7
                    )
                    llm_scene_data["prominent_objects_detail"] = self.scene_describer.format_object_list_for_description(prominent_objects)
                except Exception as e:
                    self.logger.error(f"Error getting prominent objects: {e}")

            if enable_landmark and landmark_info.get("primary_landmark"):
                llm_scene_data["primary_landmark_info"] = landmark_info["primary_landmark"]

            return self.llm_enhancer.enhance_description(llm_scene_data)
        except Exception as e:
            self.logger.error(f"Error in LLM Enhancement in main flow (analyze method): {e}")
            return base_description