Spaces:
Running
on
Zero
Running
on
Zero
File size: 50,545 Bytes
e6a18b7 ba55edb e6a18b7 ba55edb e6a18b7 ba55edb e6a18b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
import logging
import traceback
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from PIL import Image
class SceneAnalysisCoordinator:
"""
負責整個場景分析流程的協調和控制邏輯,包含主要的分析流程、
處理無檢測結果的回退邏輯,以及多源分析結果的整合。
"""
def __init__(self, component_initializer, scene_scoring_engine, landmark_processing_manager,
scene_confidence_threshold: float = 0.6):
"""
初始化場景分析協調器。
Args:
component_initializer: 組件初始化器實例
scene_scoring_engine: 場景評分引擎實例
landmark_processing_manager: 地標處理管理器實例
scene_confidence_threshold: 場景置信度閾值
"""
self.logger = logging.getLogger(__name__)
self.component_initializer = component_initializer
self.scene_scoring_engine = scene_scoring_engine
self.landmark_processing_manager = landmark_processing_manager
self.scene_confidence_threshold = scene_confidence_threshold
# 獲取必要的組件和數據
self.spatial_analyzer = component_initializer.get_component('spatial_analyzer')
self.descriptor = component_initializer.get_component('descriptor')
self.scene_describer = component_initializer.get_component('scene_describer')
self.clip_analyzer = component_initializer.get_component('clip_analyzer')
self.llm_enhancer = component_initializer.get_component('llm_enhancer')
self.scene_types = component_initializer.get_data_structure('SCENE_TYPES')
# 從組件初始化器獲取功能開關狀態
self.use_clip = component_initializer.use_clip
self.use_llm = component_initializer.use_llm
self.enable_landmark = component_initializer.enable_landmark
def analyze(self, detection_result: Any, lighting_info: Optional[Dict] = None,
class_confidence_threshold: float = 0.25, scene_confidence_threshold: float = 0.6,
enable_landmark: bool = True, places365_info: Optional[Dict] = None) -> Dict:
"""
分析檢測結果以確定場景類型並提供理解。
Args:
detection_result: 來自 YOLOv8 或類似系統的檢測結果
lighting_info: 可選的照明條件分析結果
class_confidence_threshold: 考慮物體的最小置信度
scene_confidence_threshold: 確定場景的最小置信度
enable_landmark: 是否為此次運行啟用地標檢測和識別
places365_info: 可選的 Places365 場景分類結果
Returns:
包含場景分析結果的字典
"""
current_run_enable_landmark = enable_landmark
self.logger.info(f"DIAGNOSTIC (SceneAnalyzer.analyze): Called with current_run_enable_landmark={current_run_enable_landmark}")
self.logger.debug(f"SceneAnalyzer received lighting_info type: {type(lighting_info)}")
self.logger.debug(f"SceneAnalyzer lighting_info source: {lighting_info.get('source', 'unknown') if isinstance(lighting_info, dict) else 'not_dict'}")
# 記錄 Places365 資訊
if places365_info:
self.logger.info(f"DIAGNOSTIC: Places365 info received - scene: {places365_info.get('scene_label', 'unknown')}, "
f"mapped: {places365_info.get('mapped_scene_type', 'unknown')}, "
f"confidence: {places365_info.get('confidence', 0.0):.3f}")
# 同步 enable_landmark 狀態到子組件(為此次分析運行)
self._sync_landmark_status_to_components(current_run_enable_landmark)
# 提取和處理原始圖像
original_image_pil, image_dims_val = self._extract_image_info(detection_result)
# 處理無 YOLO 檢測結果的情況
no_yolo_detections = self._check_no_yolo_detections(detection_result)
if no_yolo_detections:
return self._handle_no_yolo_detections(
original_image_pil, image_dims_val, current_run_enable_landmark,
lighting_info, places365_info
)
# 主處理流程(有 YOLO 檢測結果)
return self._handle_main_analysis_flow(
detection_result, original_image_pil, image_dims_val,
class_confidence_threshold, scene_confidence_threshold,
current_run_enable_landmark, lighting_info, places365_info
)
def _sync_landmark_status_to_components(self, current_run_enable_landmark: bool):
"""同步地標狀態到所有相關組件。"""
# 更新場景評分引擎
self.scene_scoring_engine.update_enable_landmark_status(current_run_enable_landmark)
# 更新地標處理管理器
self.landmark_processing_manager.update_enable_landmark_status(current_run_enable_landmark)
# 更新其他組件的地標狀態
for component_name in ['scene_describer', 'clip_analyzer', 'landmark_classifier']:
component = self.component_initializer.get_component(component_name)
if component and hasattr(component, 'enable_landmark'):
component.enable_landmark = current_run_enable_landmark
# 更新實例狀態
self.enable_landmark = current_run_enable_landmark
def _extract_image_info(self, detection_result) -> Tuple[Optional[Image.Image], Optional[Tuple[int, int]]]:
"""從檢測結果中提取圖像信息。"""
original_image_pil = None
image_dims_val = None # 將是 (width, height)
if (detection_result is not None and hasattr(detection_result, 'orig_img') and
detection_result.orig_img is not None):
if isinstance(detection_result.orig_img, np.ndarray):
try:
img_array = detection_result.orig_img
if img_array.ndim == 3 and img_array.shape[2] == 4: # RGBA
img_array = img_array[:, :, :3] # 轉換為 RGB
if img_array.ndim == 2: # 灰度
original_image_pil = Image.fromarray(img_array).convert("RGB")
else: # 假設 RGB 或 BGR(如果源是 cv2 BGR,PIL 在 fromarray 時會處理 BGR->RGB,但明確處理更好)
original_image_pil = Image.fromarray(img_array)
if hasattr(original_image_pil, 'mode') and original_image_pil.mode == 'BGR': # 明確將 OpenCV 的 BGR 轉換為 PIL 的 RGB
original_image_pil = original_image_pil.convert('RGB')
image_dims_val = (original_image_pil.width, original_image_pil.height)
except Exception as e:
self.logger.warning(f"Error converting NumPy orig_img to PIL: {e}")
elif hasattr(detection_result.orig_img, 'size') and callable(getattr(detection_result.orig_img, 'convert', None)):
original_image_pil = detection_result.orig_img.copy().convert("RGB") # 確保 RGB
image_dims_val = original_image_pil.size
else:
self.logger.warning(f"detection_result.orig_img (type: {type(detection_result.orig_img)}) is not a recognized NumPy array or PIL Image.")
else:
self.logger.warning("detection_result.orig_img not available. Image-based analysis will be limited.")
return original_image_pil, image_dims_val
def _check_no_yolo_detections(self, detection_result) -> bool:
"""檢查是否沒有 YOLO 檢測結果。"""
return (detection_result is None or
not hasattr(detection_result, 'boxes') or
not hasattr(detection_result.boxes, 'xyxy') or
len(detection_result.boxes.xyxy) == 0)
def _handle_no_yolo_detections(self, original_image_pil, image_dims_val,
current_run_enable_landmark, lighting_info, places365_info) -> Dict:
"""處理無 YOLO 檢測結果的情況。"""
tried_landmark_detection = False
landmark_detection_result = None
# 嘗試地標檢測
if original_image_pil and self.use_clip and current_run_enable_landmark:
landmark_detection_result = self._attempt_landmark_detection_no_yolo(
original_image_pil, image_dims_val, lighting_info
)
tried_landmark_detection = True
if landmark_detection_result:
return landmark_detection_result
# 如果地標檢測失敗或未嘗試,使用 CLIP 進行一般場景分析
if not landmark_detection_result and self.use_clip and original_image_pil:
clip_fallback_result = self._attempt_clip_fallback_analysis(
original_image_pil, image_dims_val, current_run_enable_landmark, lighting_info
)
if clip_fallback_result:
return clip_fallback_result
# 最終回退邏輯
return self._get_final_fallback_result(places365_info, lighting_info)
def _attempt_landmark_detection_no_yolo(self, original_image_pil, image_dims_val, lighting_info) -> Optional[Dict]:
"""在無 YOLO 檢測的情況下嘗試地標檢測。"""
try:
# 初始化地標分類器(如果需要)
landmark_classifier = self.component_initializer.get_component('landmark_classifier')
if not landmark_classifier and self.clip_analyzer:
if hasattr(self.clip_analyzer, 'get_clip_instance'):
try:
model, preprocess, device = self.clip_analyzer.get_clip_instance()
landmark_classifier = CLIPZeroShotClassifier(device=device)
self.landmark_processing_manager.set_landmark_classifier(landmark_classifier)
self.logger.info("Initialized landmark classifier with shared CLIP model")
except Exception as e:
self.logger.warning(f"Could not initialize landmark classifier: {e}")
return None
if landmark_classifier:
self.logger.info("Attempting landmark detection with no YOLO boxes")
landmark_results_no_yolo = landmark_classifier.intelligent_landmark_search(
original_image_pil, yolo_boxes=None, base_threshold=0.2 # 略微降低閾值,提高靈敏度
)
# 確保在無地標場景時返回有效結果
if landmark_results_no_yolo is None:
landmark_results_no_yolo = {"is_landmark_scene": False, "detected_landmarks": []}
if (landmark_results_no_yolo and landmark_results_no_yolo.get("is_landmark_scene", False)):
return self._process_landmark_detection_result(
landmark_results_no_yolo, image_dims_val, lighting_info
)
except Exception as e:
self.logger.error(f"Error in landmark-only detection path (analyze method): {e}")
traceback.print_exc()
return None
def _process_landmark_detection_result(self, landmark_results, image_dims_val, lighting_info) -> Dict:
"""處理地標檢測結果並生成最終輸出。"""
primary_landmark = landmark_results.get("primary_landmark")
# 放寬閾值條件,以便捕獲更多潛在地標
if not primary_landmark or primary_landmark.get("confidence", 0) <= 0.25:
return None
detected_objects_from_landmarks_list = []
w_img, h_img = image_dims_val if image_dims_val else (1, 1)
for lm_info_item in landmark_results.get("detected_landmarks", []):
if lm_info_item.get("confidence", 0) > 0.25: # 降低閾值與上面保持一致
# 安全獲取 box 值,避免索引錯誤
box = lm_info_item.get("box", [0, 0, w_img, h_img])
if len(box) < 4:
box = [0, 0, w_img, h_img]
# 計算中心點和標準化坐標
center_x, center_y = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2
norm_cx = center_x / w_img if w_img > 0 else 0.5
norm_cy = center_y / h_img if h_img > 0 else 0.5
# 決定地標類型
landmark_type = "architectural" # 預設類型
landmark_id = lm_info_item.get("landmark_id", "")
landmark_classifier = self.component_initializer.get_component('landmark_classifier')
if (landmark_classifier and hasattr(landmark_classifier, '_determine_landmark_type') and landmark_id):
try:
landmark_type = landmark_classifier._determine_landmark_type(landmark_id)
except Exception as e:
self.logger.error(f"Error determining landmark type: {e}")
else:
# 使用簡單的基於 ID 的啟發式方法推斷類型
landmark_id_lower = landmark_id.lower() if isinstance(landmark_id, str) else ""
if "natural" in landmark_id_lower or any(term in landmark_id_lower for term in ["mountain", "waterfall", "canyon", "lake"]):
landmark_type = "natural"
elif "monument" in landmark_id_lower or "memorial" in landmark_id_lower or "historical" in landmark_id_lower:
landmark_type = "monument"
# 決定區域位置
region = "center" # 預設值
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_determine_region'):
try:
region = self.spatial_analyzer._determine_region(norm_cx, norm_cy)
except Exception as e:
self.logger.error(f"Error determining region: {e}")
# 取得並補 location
loc_lm = lm_info_item.get("location", "")
if not loc_lm and landmark_id in ALL_LANDMARKS:
loc_lm = ALL_LANDMARKS[landmark_id].get("location", "")
# 創建地標物體
landmark_obj = {
"class_id": lm_info_item.get("landmark_id", f"LM_{lm_info_item.get('landmark_name','unk')}")[:15],
"class_name": lm_info_item.get("landmark_name", "Unknown Landmark"),
"confidence": lm_info_item.get("confidence", 0.0),
"box": box,
"center": (center_x, center_y),
"normalized_center": (norm_cx, norm_cy),
"size": (box[2] - box[0], box[3] - box[1]),
"normalized_size": (
(box[2] - box[0])/(w_img if w_img>0 else 1),
(box[3] - box[1])/(h_img if h_img>0 else 1)
),
"area": (box[2] - box[0]) * (box[3] - box[1]),
"normalized_area": (
(box[2] - box[0]) * (box[3] - box[1])
) / ((w_img*h_img) if w_img*h_img >0 else 1),
"is_landmark": True,
"landmark_id": landmark_id,
"location": loc_lm or "Unknown Location",
"region": region,
"year_built": lm_info_item.get("year_built", ""),
"architectural_style": lm_info_item.get("architectural_style", ""),
"significance": lm_info_item.get("significance", ""),
"landmark_type": landmark_type
}
detected_objects_from_landmarks_list.append(landmark_obj)
if not detected_objects_from_landmarks_list:
return None
# 設定場景類型
best_scene_val = "tourist_landmark" # 預設
if primary_landmark:
try:
lm_type = primary_landmark.get("landmark_type", "architectural")
if lm_type and "natural" in lm_type.lower():
best_scene_val = "natural_landmark"
elif lm_type and ("historical" in lm_type.lower() or "monument" in lm_type.lower()):
best_scene_val = "historical_monument"
except Exception as e:
self.logger.error(f"Error determining scene type from landmark type: {e}")
# 確保場景類型有效
if best_scene_val not in self.scene_types:
best_scene_val = "tourist_landmark" # 預設場景類型
# 設定置信度
scene_confidence = primary_landmark.get("confidence", 0.0) if primary_landmark else 0.0
# 生成其他必要的分析結果
region_analysis = self._generate_region_analysis(detected_objects_from_landmarks_list)
functional_zones = self._generate_functional_zones(
detected_objects_from_landmarks_list,
best_scene_val
)
scene_description = self._generate_scene_description(
best_scene_val, detected_objects_from_landmarks_list, scene_confidence,
lighting_info, functional_zones, image_dims_val
)
enhanced_description = self._enhance_description_with_llm(
scene_description, best_scene_val, detected_objects_from_landmarks_list,
scene_confidence, lighting_info, functional_zones, landmark_results, image_dims_val
)
possible_activities = self._extract_possible_activities(detected_objects_from_landmarks_list, landmark_results)
safety_concerns = []
if self.descriptor and hasattr(self.descriptor, '_identify_safety_concerns'):
safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_from_landmarks_list, best_scene_val)
# 準備最終結果
return {
"scene_type": best_scene_val,
"scene_name": self.scene_types.get(best_scene_val, {}).get("name", "Landmark"),
"confidence": round(float(scene_confidence), 4),
"description": scene_description,
"enhanced_description": enhanced_description,
"objects_present": detected_objects_from_landmarks_list,
"object_count": len(detected_objects_from_landmarks_list),
"regions": region_analysis,
"possible_activities": possible_activities,
"safety_concerns": safety_concerns,
"functional_zones": functional_zones,
"detected_landmarks": [lm for lm in detected_objects_from_landmarks_list if lm.get("is_landmark", False)],
"primary_landmark": primary_landmark,
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
def _attempt_clip_fallback_analysis(self, original_image_pil, image_dims_val,
current_run_enable_landmark, lighting_info) -> Optional[Dict]:
"""嘗試使用 CLIP 進行一般場景分析。"""
try:
clip_analysis_val = None
if self.clip_analyzer and hasattr(self.clip_analyzer, 'analyze_image'):
try:
clip_analysis_val = self.clip_analyzer.analyze_image(
original_image_pil,
enable_landmark=current_run_enable_landmark
)
except Exception as e:
self.logger.error(f"Error in CLIP analysis: {e}")
scene_type_llm = "llm_inferred_no_yolo"
confidence_llm = 0.0
if clip_analysis_val and isinstance(clip_analysis_val, dict):
top_scene = clip_analysis_val.get("top_scene")
if top_scene and isinstance(top_scene, tuple) and len(top_scene) >= 2:
confidence_llm = top_scene[1]
if isinstance(top_scene[0], str):
scene_type_llm = top_scene[0]
desc_llm = "Primary object detection did not yield results. This description is based on overall image context."
w_llm, h_llm = image_dims_val if image_dims_val else (1, 1)
enhanced_desc_llm = self._enhance_no_detection_description(
desc_llm, scene_type_llm, confidence_llm, lighting_info,
clip_analysis_val, current_run_enable_landmark, w_llm, h_llm
)
# 安全類型轉換
try:
confidence_float = float(confidence_llm)
except (ValueError, TypeError):
confidence_float = 0.0
# 確保增強描述不為空
if not enhanced_desc_llm or not isinstance(enhanced_desc_llm, str):
enhanced_desc_llm = desc_llm
# 返回結果
return {
"scene_type": scene_type_llm,
"confidence": round(confidence_float, 4),
"description": desc_llm,
"enhanced_description": enhanced_desc_llm,
"objects_present": [],
"object_count": 0,
"regions": {},
"possible_activities": [],
"safety_concerns": [],
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
except Exception as e:
self.logger.error(f"Error in CLIP no-detection fallback (analyze method): {e}")
traceback.print_exc()
return None
def _get_final_fallback_result(self, places365_info, lighting_info) -> Dict:
"""獲取最終的回退結果。"""
# 檢查 Places365 是否提供有用的場景信息(即使沒有 YOLO 檢測)
fallback_scene_type = "unknown"
fallback_confidence = 0.0
fallback_description = "No objects were detected in the image, and contextual analysis could not be performed or failed."
if places365_info and places365_info.get('confidence', 0) > 0.3:
fallback_scene_type = places365_info.get('mapped_scene_type', 'unknown')
fallback_confidence = places365_info.get('confidence', 0.0)
fallback_description = f"Scene appears to be {places365_info.get('scene_label', 'an unidentified location')} based on overall visual context."
return {
"scene_type": fallback_scene_type,
"confidence": fallback_confidence,
"description": fallback_description,
"enhanced_description": "The image analysis system could not detect any recognizable objects or landmarks in this image.",
"objects_present": [],
"object_count": 0,
"regions": {},
"possible_activities": [],
"safety_concerns": [],
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
def _handle_main_analysis_flow(self, detection_result, original_image_pil, image_dims_val,
class_confidence_threshold, scene_confidence_threshold,
current_run_enable_landmark, lighting_info, places365_info) -> Dict:
"""處理主要的分析流程(有 YOLO 檢測結果)。"""
# 更新類別名稱映射
if hasattr(detection_result, 'names'):
if hasattr(self.spatial_analyzer, 'class_names'):
self.spatial_analyzer.class_names = detection_result.names
# 提取檢測到的物體
detected_objects_main = self.spatial_analyzer._extract_detected_objects(
detection_result,
confidence_threshold=class_confidence_threshold
)
if not detected_objects_main:
return {
"scene_type": "unknown", "confidence": 0.0,
"description": "No objects detected with sufficient confidence by the primary vision system.",
"objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
"safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
# 空間分析
region_analysis_val = self.spatial_analyzer._analyze_regions(detected_objects_main)
if current_run_enable_landmark:
self.logger.info("Using landmark detection logic for YOLO scene")
return self._handle_no_yolo_detections(
original_image_pil, image_dims_val, current_run_enable_landmark,
lighting_info, places365_info
)
# 地標處理和整合
landmark_objects_identified = []
landmark_specific_activities = []
final_landmark_info = {}
# 如果當前運行禁用地標檢測,清理地標物體
if not current_run_enable_landmark:
detected_objects_main = [obj for obj in detected_objects_main if not obj.get("is_landmark", False)]
final_landmark_info = {}
# 計算場景分數並進行融合
yolo_scene_scores = self.scene_scoring_engine.compute_scene_scores(
detected_objects_main, spatial_analysis_results=region_analysis_val
)
clip_scene_scores = {}
clip_analysis_results = None
if self.use_clip and original_image_pil is not None:
clip_analysis_results, clip_scene_scores = self._perform_clip_analysis(
original_image_pil, current_run_enable_landmark, lighting_info
)
# 融合場景分數
yolo_only_objects = [obj for obj in detected_objects_main if not obj.get("is_landmark")]
num_yolo_detections = len(yolo_only_objects)
avg_yolo_confidence = (sum(obj.get('confidence', 0.0) for obj in yolo_only_objects) / num_yolo_detections
if num_yolo_detections > 0 else 0.0)
scene_scores_fused = self.scene_scoring_engine.fuse_scene_scores(
yolo_scene_scores, clip_scene_scores,
num_yolo_detections=num_yolo_detections,
avg_yolo_confidence=avg_yolo_confidence,
lighting_info=lighting_info,
places365_info=places365_info
)
# 確定最終場景類型
final_best_scene, final_scene_confidence = self.scene_scoring_engine.determine_scene_type(scene_scores_fused)
# 處理禁用地標檢測時的替代場景類型
if (not current_run_enable_landmark and
final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]):
alt_scene_type = self.landmark_processing_manager.get_alternative_scene_type(
final_best_scene, detected_objects_main, scene_scores_fused
)
final_best_scene = alt_scene_type
final_scene_confidence = scene_scores_fused.get(alt_scene_type, 0.6)
# 生成最終的描述性內容
final_result = self._generate_final_result(
final_best_scene, final_scene_confidence, detected_objects_main,
landmark_specific_activities, landmark_objects_identified, final_landmark_info,
region_analysis_val, lighting_info, scene_scores_fused, current_run_enable_landmark,
clip_analysis_results, image_dims_val, scene_confidence_threshold
)
return final_result
def _perform_clip_analysis(self, original_image_pil, current_run_enable_landmark, lighting_info) -> Tuple[Optional[Dict], Dict]:
"""執行 CLIP 分析。"""
clip_analysis_results = None
clip_scene_scores = {}
try:
clip_analysis_results = self.clip_analyzer.analyze_image(
original_image_pil,
enable_landmark=current_run_enable_landmark,
exclude_categories=["landmark", "tourist", "monument", "tower", "attraction", "scenic", "historical", "famous"] if not current_run_enable_landmark else None
)
if isinstance(clip_analysis_results, dict):
clip_scene_scores = clip_analysis_results.get("scene_scores", {})
# 如果禁用地標檢測,再次過濾
if not current_run_enable_landmark:
clip_scene_scores = {k: v for k, v in clip_scene_scores.items()
if not any(kw in k.lower() for kw in ["landmark", "monument", "tourist"])}
if "cultural_analysis" in clip_analysis_results:
del clip_analysis_results["cultural_analysis"]
if ("top_scene" in clip_analysis_results and
any(term in clip_analysis_results.get("top_scene", ["unknown", 0.0])[0].lower()
for term in ["landmark", "monument", "tourist"])):
non_lm_cs = sorted([item for item in clip_scene_scores.items() if item[1] > 0],
key=lambda x: x[1], reverse=True)
clip_analysis_results["top_scene"] = non_lm_cs[0] if non_lm_cs else ("unknown", 0.0)
# 處理照明信息回退
if (not lighting_info and "lighting_condition" in clip_analysis_results):
lt, lc = clip_analysis_results.get("lighting_condition", ("unknown", 0.0))
lighting_info = {"time_of_day": lt, "confidence": lc, "source": "CLIP_fallback"}
except Exception as e:
self.logger.error(f"Error in main CLIP analysis for YOLO path (analyze method): {e}")
return clip_analysis_results, clip_scene_scores
def _generate_final_result(self, final_best_scene, final_scene_confidence, detected_objects_main,
landmark_specific_activities, landmark_objects_identified, final_landmark_info,
region_analysis_val, lighting_info, scene_scores_fused, current_run_enable_landmark,
clip_analysis_results, image_dims_val, scene_confidence_threshold) -> Dict:
"""生成最終的分析結果。"""
# 生成最終的描述性內容(活動、安全、區域)
final_activities = []
# 通用活動推斷
generic_activities = []
if self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
generic_activities = self.descriptor._infer_possible_activities(
final_best_scene, detected_objects_main,
enable_landmark=current_run_enable_landmark, scene_scores=scene_scores_fused
)
# 優先處理策略:使用特定地標活動,不足時才從通用活動補充
if landmark_specific_activities:
# 如果有特定活動,優先保留,去除與特定活動重複的通用活動
unique_generic_activities = [act for act in generic_activities if act not in landmark_specific_activities]
# 如果特定活動少於3個,從通用活動中補充
if len(landmark_specific_activities) < 3:
# 補充通用活動但總數不超過7個
supplement_count = min(3 - len(landmark_specific_activities), len(unique_generic_activities))
if supplement_count > 0:
final_activities.extend(unique_generic_activities[:supplement_count])
else:
# 若無特定活動,則使用所有通用活動
final_activities.extend(generic_activities)
# 去重並排序,但確保特定地標活動保持在前面
final_activities_set = set(final_activities)
final_activities = []
# 先加入特定地標活動(按原順序)
for activity in landmark_specific_activities:
if activity in final_activities_set:
final_activities.append(activity)
final_activities_set.remove(activity)
# 再加入通用活動(按字母排序)
final_activities.extend(sorted(list(final_activities_set)))
# 安全問題識別
final_safety_concerns = []
if self.descriptor and hasattr(self.descriptor, '_identify_safety_concerns'):
final_safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_main, final_best_scene)
# 功能區域識別
final_functional_zones = {}
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_functional_zones'):
general_zones = self.spatial_analyzer._identify_functional_zones(detected_objects_main, final_best_scene)
final_functional_zones.update(general_zones)
# 地標相關的功能區域
if landmark_objects_identified and self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_landmark_zones'):
landmark_zones = self.spatial_analyzer._identify_landmark_zones(landmark_objects_identified)
final_functional_zones.update(landmark_zones)
# 如果當前運行禁用地標檢測,過濾相關內容
if not current_run_enable_landmark:
final_functional_zones = {
str(k): v
for k, v in final_functional_zones.items()
if (not str(k).isdigit())
and (not any(kw in str(k).lower() for kw in ["landmark", "monument", "viewing", "tourist"]))
}
current_activities_temp = [act for act in final_activities
if not any(kw in act.lower() for kw in ["sightsee", "photograph", "tour", "histor", "landmark", "monument", "cultur"])]
final_activities = current_activities_temp
if not final_activities and self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
final_activities = self.descriptor._infer_possible_activities("generic_street_view", detected_objects_main, enable_landmark=False)
# 創建淨化的光線資訊,避免不合理的時間描述
lighting_info_clean = None
if lighting_info:
lighting_info_clean = {
"is_indoor": lighting_info.get("is_indoor"),
"confidence": lighting_info.get("confidence", 0.0),
"time_of_day": lighting_info.get("time_of_day", "unknown")
}
# 生成場景描述
base_scene_description = self._generate_scene_description(
final_best_scene, detected_objects_main, final_scene_confidence,
lighting_info_clean, final_functional_zones, image_dims_val
)
# 清理地標引用(如果禁用地標檢測)
if not current_run_enable_landmark:
base_scene_description = self.landmark_processing_manager.remove_landmark_references(base_scene_description)
# LLM 增強
enhanced_final_description = self._enhance_final_description(
base_scene_description, final_best_scene, final_scene_confidence, detected_objects_main,
final_functional_zones, final_activities, final_safety_concerns, lighting_info,
clip_analysis_results, current_run_enable_landmark, image_dims_val, final_landmark_info
)
# 清理增強描述的地標引用
if not current_run_enable_landmark:
enhanced_final_description = self.landmark_processing_manager.remove_landmark_references(enhanced_final_description)
# 構建最終輸出字典
output_result = {
"scene_type": final_best_scene if final_scene_confidence >= scene_confidence_threshold else "unknown",
"scene_name": (self.scene_types.get(final_best_scene, {}).get("name", "Unknown Scene")
if final_scene_confidence >= scene_confidence_threshold else "Unknown Scene"),
"confidence": round(float(final_scene_confidence), 4),
"description": base_scene_description,
"enhanced_description": enhanced_final_description,
"objects_present": [{"class_id": obj.get("class_id", -1),
"class_name": obj.get("class_name", "unknown"),
"confidence": round(float(obj.get("confidence", 0.0)), 4)}
for obj in detected_objects_main],
"object_count": len(detected_objects_main),
"regions": region_analysis_val,
"possible_activities": final_activities,
"safety_concerns": final_safety_concerns,
"functional_zones": final_functional_zones,
"lighting_conditions": lighting_info if lighting_info else {"time_of_day": "unknown", "confidence": 0.0, "source": "default"}
}
# 添加替代場景
if self.descriptor and hasattr(self.descriptor, '_get_alternative_scenes'):
output_result["alternative_scenes"] = self.descriptor._get_alternative_scenes(
scene_scores_fused, scene_confidence_threshold, top_k=2
)
# 添加地標相關信息
if current_run_enable_landmark and final_landmark_info and final_landmark_info.get("detected_landmarks"):
output_result.update(final_landmark_info)
if final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]:
output_result["scene_source"] = "landmark_detection"
elif not current_run_enable_landmark:
for key_rm in ["detected_landmarks", "primary_landmark", "detailed_landmarks", "scene_source"]:
if key_rm in output_result:
del output_result[key_rm]
# 添加 CLIP 分析結果
if clip_analysis_results and isinstance(clip_analysis_results, dict) and "error" not in clip_analysis_results:
top_scene_clip = clip_analysis_results.get("top_scene", ("unknown", 0.0))
output_result["clip_analysis"] = {
"top_scene": (top_scene_clip[0], round(float(top_scene_clip[1]), 4)),
"cultural_analysis": clip_analysis_results.get("cultural_analysis", {}) if current_run_enable_landmark else {}
}
return output_result
# 輔助方法
def _generate_region_analysis(self, detected_objects):
"""生成區域分析結果。"""
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_analyze_regions'):
try:
return self.spatial_analyzer._analyze_regions(detected_objects)
except Exception as e:
self.logger.error(f"Error analyzing regions: {e}")
return {}
def _generate_functional_zones(self, detected_objects, scene_type):
"""
生成功能區域。
由於原本直接呼叫 _identify_landmark_zones,導致非地標場景必定回 {}。
這裡改為呼叫 _identify_functional_zones,並帶入 scene_type。
"""
try:
# 如果 spatial_analyzer 可以識別 functional zones,就調用它
if self.spatial_analyzer and hasattr(self.spatial_analyzer, '_identify_functional_zones'):
return self.spatial_analyzer._identify_functional_zones(detected_objects, scene_type)
except Exception as e:
self.logger.error(f"Error identifying functional zones: {e}")
self.logger.error(traceback.format_exc())
return {}
def _generate_scene_description(self, scene_type, detected_objects, confidence,
lighting_info, functional_zones, image_dims):
"""生成場景描述。"""
if self.scene_describer and hasattr(self.scene_describer, 'generate_description'):
try:
for obj in detected_objects:
if obj.get("is_landmark"):
loc_obj = obj.get("location", "")
lm_id_obj = obj.get("landmark_id")
if (not loc_obj) and lm_id_obj and lm_id_obj in ALL_LANDMARKS:
obj["location"] = ALL_LANDMARKS[lm_id_obj].get("location", "")
return self.scene_describer.generate_description(
scene_type=scene_type,
detected_objects=detected_objects,
confidence=confidence,
lighting_info=lighting_info,
functional_zones=list(functional_zones.keys()) if functional_zones else [],
enable_landmark=self.enable_landmark,
scene_scores={scene_type: confidence},
spatial_analysis={},
image_dimensions=image_dims
)
except Exception as e:
self.logger.error(f"Error generating scene description: {e}")
return f"A {scene_type} scene."
def _enhance_description_with_llm(self, scene_description, scene_type, detected_objects,
confidence, lighting_info, functional_zones, landmark_results, image_dims):
"""使用 LLM 增強描述。"""
if not self.use_llm or not self.llm_enhancer:
return scene_description
try:
prominent_objects_detail = ""
if self.scene_describer and hasattr(self.scene_describer, 'format_object_list_for_description'):
try:
prominent_objects_detail = self.scene_describer.format_object_list_for_description(
detected_objects[:min(1, len(detected_objects))]
)
except Exception as e:
self.logger.error(f"Error formatting object list: {e}")
w_img, h_img = image_dims if image_dims else (1, 1)
scene_data_llm = {
"original_description": scene_description,
"scene_type": scene_type,
"scene_name": self.scene_types.get(scene_type, {}).get("name", "Landmark"),
"detected_objects": detected_objects,
"object_list": "landmark",
"confidence": confidence,
"lighting_info": lighting_info,
"functional_zones": functional_zones,
"clip_analysis": landmark_results.get("clip_analysis_on_full_image", {}),
"enable_landmark": True,
"image_width": w_img,
"image_height": h_img,
"prominent_objects_detail": prominent_objects_detail
}
return self.llm_enhancer.enhance_description(scene_data_llm)
except Exception as e:
self.logger.error(f"Error enhancing description with LLM: {e}")
traceback.print_exc()
return scene_description
def _enhance_no_detection_description(self, desc, scene_type, confidence, lighting_info,
clip_analysis, enable_landmark, width, height):
"""增強無檢測結果的描述。"""
if not self.use_llm or not self.llm_enhancer:
return desc
try:
clip_analysis_safe = {}
if isinstance(clip_analysis, dict):
clip_analysis_safe = clip_analysis
scene_data_llm = {
"original_description": desc,
"scene_type": scene_type,
"scene_name": "Contextually Inferred (No Detections)",
"detected_objects": [],
"object_list": "general ambiance",
"confidence": confidence,
"lighting_info": lighting_info or {"time_of_day": "unknown", "confidence": 0.0},
"clip_analysis": clip_analysis_safe,
"enable_landmark": enable_landmark,
"image_width": width,
"image_height": height,
"prominent_objects_detail": "the overall visual context"
}
if hasattr(self.llm_enhancer, 'enhance_description'):
try:
enhanced = self.llm_enhancer.enhance_description(scene_data_llm)
if enhanced and len(enhanced.strip()) >= 20:
return enhanced
except Exception as e:
self.logger.error(f"Error in enhance_description: {e}")
if hasattr(self.llm_enhancer, 'handle_no_detection'):
try:
return self.llm_enhancer.handle_no_detection(clip_analysis_safe)
except Exception as e:
self.logger.error(f"Error in handle_no_detection: {e}")
except Exception as e:
self.logger.error(f"Error preparing data for LLM enhancement: {e}")
traceback.print_exc()
return desc
def _extract_possible_activities(self, detected_objects, landmark_results):
"""提取可能的活動。"""
possible_activities = ["Sightseeing"]
# 檢查是否有主要地標活動從 CLIP 分析結果中獲取
primary_landmark_activities = landmark_results.get("primary_landmark_activities", [])
if primary_landmark_activities:
self.logger.info(f"Using {len(primary_landmark_activities)} landmark-specific activities")
possible_activities = primary_landmark_activities
else:
# 從檢測到的地標中提取特定活動
landmark_specific_activities = self.landmark_processing_manager.extract_landmark_specific_activities(detected_objects)
if landmark_specific_activities:
possible_activities = list(set(landmark_specific_activities)) # 去重
self.logger.info(f"Extracted {len(possible_activities)} activities from landmark data")
else:
# 回退到通用活動推斷
if self.descriptor and hasattr(self.descriptor, '_infer_possible_activities'):
try:
possible_activities = self.descriptor._infer_possible_activities(
"tourist_landmark",
detected_objects,
enable_landmark=True,
scene_scores={"tourist_landmark": 0.8}
)
except Exception as e:
self.logger.error(f"Error inferring possible activities: {e}")
return possible_activities
def _enhance_final_description(self, base_description, scene_type, scene_confidence, detected_objects,
functional_zones, activities, safety_concerns, lighting_info,
clip_analysis_results, enable_landmark, image_dims, landmark_info):
"""增強最終描述。"""
if not self.use_llm or not self.llm_enhancer:
return base_description
try:
obj_list_for_llm = ", ".join(sorted(list(set(
obj["class_name"] for obj in detected_objects
if obj.get("confidence", 0) > 0.4 and not obj.get("is_landmark")
))))
if not obj_list_for_llm and enable_landmark and landmark_info.get("primary_landmark"):
obj_list_for_llm = landmark_info["primary_landmark"].get("class_name", "a prominent feature")
elif not obj_list_for_llm:
obj_list_for_llm = "various visual elements"
# 生成物體統計信息
object_statistics = {}
for obj in detected_objects:
class_name = obj.get("class_name", "unknown")
if class_name not in object_statistics:
object_statistics[class_name] = {
"count": 0,
"avg_confidence": 0.0,
"max_confidence": 0.0,
"instances": []
}
stats = object_statistics[class_name]
stats["count"] += 1
stats["instances"].append(obj)
stats["max_confidence"] = max(stats["max_confidence"], obj.get("confidence", 0.0))
# 計算平均信心度
for class_name, stats in object_statistics.items():
if stats["count"] > 0:
total_conf = sum(inst.get("confidence", 0.0) for inst in stats["instances"])
stats["avg_confidence"] = total_conf / stats["count"]
llm_scene_data = {
"original_description": base_description,
"scene_type": scene_type,
"scene_name": self.scene_types.get(scene_type, {}).get("name", "Unknown Scene"),
"detected_objects": detected_objects,
"object_list": obj_list_for_llm,
"object_statistics": object_statistics,
"confidence": scene_confidence,
"lighting_info": lighting_info,
"functional_zones": functional_zones,
"activities": activities,
"safety_concerns": safety_concerns,
"clip_analysis": clip_analysis_results if isinstance(clip_analysis_results, dict) else None,
"enable_landmark": enable_landmark,
"image_width": image_dims[0] if image_dims else None,
"image_height": image_dims[1] if image_dims else None,
"prominent_objects_detail": ""
}
# 添加顯著物體詳細信息
if self.scene_describer and hasattr(self.scene_describer, 'get_prominent_objects') and hasattr(self.scene_describer, 'format_object_list_for_description'):
try:
prominent_objects = self.scene_describer.get_prominent_objects(
detected_objects, min_prominence_score=0.1, max_categories_to_return=3, max_total_objects=7
)
llm_scene_data["prominent_objects_detail"] = self.scene_describer.format_object_list_for_description(prominent_objects)
except Exception as e:
self.logger.error(f"Error getting prominent objects: {e}")
if enable_landmark and landmark_info.get("primary_landmark"):
llm_scene_data["primary_landmark_info"] = landmark_info["primary_landmark"]
return self.llm_enhancer.enhance_description(llm_scene_data)
except Exception as e:
self.logger.error(f"Error in LLM Enhancement in main flow (analyze method): {e}")
return base_description
|