File size: 40,243 Bytes
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
import numpy as np
import logging
import traceback
from typing import Dict, Any, Optional, List, Tuple
from configuration_manager import ConfigurationManager


class LightingConditionAnalyzer:
    """
    Determines specific lighting conditions and time of day based on scene analysis.
    此class 會判斷一些光線的特定場景

    This class analyzes lighting characteristics including natural and artificial illumination,
    color temperature patterns, and temporal indicators to classify scenes into specific
    lighting categories such as day clear, night with lights, indoor artificial, etc.
    """

    def __init__(self, config_manager: ConfigurationManager):
        """
        Initialize the lighting condition analyzer.

        Args:
            config_manager: Configuration manager instance for accessing thresholds and parameters.
        """
        self.config_manager = config_manager
        self.logger = self._setup_logger()

        # Internal threshold constants for Places365 analysis
        self.P365_ATTRIBUTE_CONF_THRESHOLD = 0.60
        self.P365_SCENE_MODERATE_CONF_THRESHOLD = 0.45
        self.P365_SCENE_HIGH_CONF_THRESHOLD = 0.70

        # Scene type keyword definitions
        self.P365_OUTDOOR_SCENE_KEYWORDS = [
            "street", "road", "highway", "park", "beach", "mountain", "forest", "field",
            "outdoor", "sky", "coast", "courtyard", "square", "plaza", "bridge",
            "parking", "playground", "stadium", "construction", "river", "ocean", "desert",
            "garden", "trail", "natural_landmark", "airport_outdoor", "train_station_outdoor",
            "bus_station_outdoor", "intersection", "crosswalk", "sidewalk", "pathway"
        ]

        self.P365_INDOOR_RESTAURANT_KEYWORDS = [
            "restaurant", "bar", "cafe", "dining_room", "pub", "bistro", "eatery"
        ]

    def _setup_logger(self) -> logging.Logger:
        """Set up logger for lighting condition analysis operations."""
        logger = logging.getLogger(f"{__name__}.LightingConditionAnalyzer")
        if not logger.handlers:
            handler = logging.StreamHandler()
            formatter = logging.Formatter(
                '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
            )
            handler.setFormatter(formatter)
            logger.addHandler(handler)
            logger.setLevel(logging.INFO)
        return logger

    def analyze_lighting_conditions(self, features: Dict[str, Any], is_indoor: bool,
                                   places365_info: Optional[Dict] = None) -> Dict[str, Any]:
        """
        Determine specific lighting conditions based on features and scene context.

        Args:
            features: Dictionary containing extracted image features.
            is_indoor: Boolean indicating whether the scene is indoor (from previous classification).
            places365_info: Optional Places365 classification information.

        Returns:
            Dictionary containing lighting analysis results including time_of_day, confidence,
            and diagnostic information.
        """
        try:
            self.logger.debug(f"Starting lighting analysis for {'indoor' if is_indoor else 'outdoor'} scene")

            # Initialize analysis results
            time_of_day = "unknown"
            confidence = 0.5
            diagnostics = {}

            # Extract Places365 context
            p365_context = self._extract_places365_context(places365_info, diagnostics)

            # Priority 1: Use Places365 attributes if highly confident
            attribute_result = self._analyze_places365_attributes(
                p365_context, is_indoor, features, diagnostics
            )

            if attribute_result["determined"] and attribute_result["confidence"] >= 0.75:
                self.logger.debug(f"High-confidence Places365 attribute determination: {attribute_result['time_of_day']}")
                return {
                    "time_of_day": attribute_result["time_of_day"],
                    "confidence": attribute_result["confidence"],
                    "diagnostics": diagnostics
                }

            # Priority 2: Visual feature analysis with Places365 scene context
            visual_result = self._analyze_visual_features(
                features, is_indoor, p365_context, diagnostics
            )

            time_of_day = visual_result["time_of_day"]
            confidence = visual_result["confidence"]

            # Combine with attribute result if it exists but wasn't decisive
            if attribute_result["determined"]:
                combined_result = self._combine_attribute_and_visual_results(
                    attribute_result, visual_result, diagnostics
                )
                time_of_day = combined_result["time_of_day"]
                confidence = combined_result["confidence"]

            # Priority 3: Special lighting refinement (neon, sodium vapor)
            refined_result = self._apply_special_lighting_refinement(
                time_of_day, confidence, features, is_indoor, p365_context, diagnostics
            )

            time_of_day = refined_result["time_of_day"]
            confidence = refined_result["confidence"]

            # Final confidence clamping
            confidence = min(0.95, max(0.50, confidence))

            # Record final results
            diagnostics["final_lighting_time_of_day"] = time_of_day
            diagnostics["final_lighting_confidence"] = round(confidence, 3)

            self.logger.debug(f"Lighting analysis complete: {time_of_day} (confidence: {confidence:.3f})")

            return {
                "time_of_day": time_of_day,
                "confidence": confidence,
                "diagnostics": diagnostics
            }

        except Exception as e:
            self.logger.error(f"Error in lighting condition analysis: {str(e)}")
            self.logger.error(f"Traceback: {traceback.format_exc()}")
            return self._get_default_lighting_result()

    def _extract_places365_context(self, places365_info: Optional[Dict],
                                  diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Extract and validate Places365 context information for lighting analysis."""
        context = {
            "mapped_scene": "unknown",
            "attributes": [],
            "confidence": 0.0
        }

        if places365_info:
            context["mapped_scene"] = places365_info.get('mapped_scene_type', 'unknown').lower()
            context["attributes"] = [attr.lower() for attr in places365_info.get('attributes', [])]
            context["confidence"] = places365_info.get('confidence', 0.0)

            diagnostics["p365_context_for_lighting"] = (
                f"P365 Scene: {context['mapped_scene']}, Attrs: {context['attributes']}, "
                f"Conf: {context['confidence']:.2f}"
            )

        return context

    def _analyze_places365_attributes(self, p365_context: Dict[str, Any], is_indoor: bool,
                                     features: Dict[str, Any], diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze Places365 attributes for lighting condition determination."""
        if (not p365_context["attributes"] or
            p365_context["confidence"] <= self.P365_ATTRIBUTE_CONF_THRESHOLD):
            return {"determined": False, "time_of_day": "unknown", "confidence": 0.5}

        confidence = p365_context["confidence"]
        attributes = p365_context["attributes"]
        mapped_scene = p365_context["mapped_scene"]

        # Outdoor attribute analysis
        if not is_indoor:
            outdoor_result = self._analyze_outdoor_attributes(
                attributes, mapped_scene, confidence, diagnostics
            )
            if outdoor_result["determined"]:
                return outdoor_result

        # Indoor attribute analysis
        if is_indoor:
            indoor_result = self._analyze_indoor_attributes(
                attributes, mapped_scene, features, confidence, diagnostics
            )
            if indoor_result["determined"]:
                return indoor_result

        return {"determined": False, "time_of_day": "unknown", "confidence": 0.5}

    def _analyze_outdoor_attributes(self, attributes: List[str], mapped_scene: str,
                                   confidence: float, diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze Places365 attributes for outdoor lighting conditions."""
        base_confidence_boost = (confidence - self.P365_ATTRIBUTE_CONF_THRESHOLD) * 0.25

        if "sunny" in attributes or "clear sky" in attributes:
            final_confidence = 0.85 + base_confidence_boost
            diagnostics["reason"] = "P365 attribute: sunny/clear sky (Outdoor)."
            return {
                "determined": True,
                "time_of_day": "day_clear",
                "confidence": final_confidence
            }

        elif "nighttime" in attributes or "night" in attributes:
            if ("artificial lighting" in attributes or "man-made lighting" in attributes or
                any(kw in mapped_scene for kw in ["street", "city", "road", "urban", "downtown"])):
                final_confidence = 0.82 + base_confidence_boost * 0.8
                diagnostics["reason"] = "P365 attribute: nighttime with artificial/street lights (Outdoor)."
                return {
                    "determined": True,
                    "time_of_day": "night_with_lights",
                    "confidence": final_confidence
                }
            else:
                final_confidence = 0.78 + base_confidence_boost * 0.8
                diagnostics["reason"] = "P365 attribute: nighttime, dark (Outdoor)."
                return {
                    "determined": True,
                    "time_of_day": "night_dark",
                    "confidence": final_confidence
                }

        elif "cloudy" in attributes or "overcast" in attributes:
            final_confidence = 0.80 + base_confidence_boost
            diagnostics["reason"] = "P365 attribute: cloudy/overcast (Outdoor)."
            return {
                "determined": True,
                "time_of_day": "day_cloudy_overcast",
                "confidence": final_confidence
            }

        return {"determined": False, "time_of_day": "unknown", "confidence": 0.5}

    def _analyze_indoor_attributes(self, attributes: List[str], mapped_scene: str,
                                  features: Dict[str, Any], confidence: float,
                                  diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze Places365 attributes for indoor lighting conditions."""
        base_confidence_boost = (confidence - self.P365_ATTRIBUTE_CONF_THRESHOLD) * 0.20
        avg_brightness = features.get("avg_brightness", 128.0)

        if "artificial lighting" in attributes or "man-made lighting" in attributes:
            base_indoor_conf = 0.70 + base_confidence_boost
            thresholds = self.config_manager.lighting_thresholds

            if avg_brightness > thresholds.indoor_bright_thresh:
                time_of_day = "indoor_bright_artificial"
                final_confidence = base_indoor_conf + 0.10
            elif avg_brightness > thresholds.indoor_moderate_thresh:
                time_of_day = "indoor_moderate_artificial"
                final_confidence = base_indoor_conf
            else:
                time_of_day = "indoor_dim_artificial"
                final_confidence = base_indoor_conf - 0.05

            diagnostics["reason"] = (
                f"P365 attribute: artificial lighting (Indoor), "
                f"brightness based category: {time_of_day}."
            )
            return {
                "determined": True,
                "time_of_day": time_of_day,
                "confidence": final_confidence
            }

        elif "natural lighting" in attributes:
            is_applicable_scene = (
                self._check_home_environment_pattern(features) or
                any(kw in mapped_scene for kw in ["living_room", "bedroom", "sunroom"])
            )
            if is_applicable_scene:
                final_confidence = 0.80 + base_confidence_boost
                diagnostics["reason"] = "P365 attribute: natural lighting in residential/applicable indoor scene."
                return {
                    "determined": True,
                    "time_of_day": "indoor_residential_natural",
                    "confidence": final_confidence
                }

        return {"determined": False, "time_of_day": "unknown", "confidence": 0.5}

    def _analyze_visual_features(self, features: Dict[str, Any], is_indoor: bool,
                                p365_context: Dict[str, Any], diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze visual features for lighting condition determination."""
        if is_indoor:
            return self._analyze_indoor_visual_features(features, p365_context, diagnostics)
        else:
            return self._analyze_outdoor_visual_features(features, p365_context, diagnostics)

    def _analyze_indoor_visual_features(self, features: Dict[str, Any], p365_context: Dict[str, Any],
                                       diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze visual features for indoor lighting conditions."""
        avg_brightness = features.get("avg_brightness", 128.0)
        thresholds = self.config_manager.lighting_thresholds

        # Extract relevant features
        sky_blue_in_sky_region = features.get("sky_region_blue_dominance", 0.0)
        sky_region_is_brighter = features.get("sky_region_brightness_ratio", 1.0) > 1.05
        is_likely_home_environment = self._check_home_environment_pattern(features)

        # Lighting and structural features
        circular_lights = features.get("circular_light_count", 0)
        bright_spots_overall = features.get("bright_spot_count", 0)
        brightness_uniformity = features.get("brightness_uniformity", 0.0)
        warm_ratio = features.get("warm_ratio", 0.0)

        # Natural light hints calculation
        natural_light_hints = 0.0
        if sky_blue_in_sky_region > 0.05 and sky_region_is_brighter:
            natural_light_hints += 1.0
        if brightness_uniformity > 0.65 and features.get("brightness_std", 100.0) < 70:
            natural_light_hints += 1.0
        if warm_ratio > 0.15 and avg_brightness > 110:
            natural_light_hints += 0.5

        # Designer lighting detection
        is_designer_lit = (
            (circular_lights > 0 or bright_spots_overall > 2) and
            brightness_uniformity > 0.6 and warm_ratio > 0.2 and avg_brightness > 90
        )

        # Brightness-based classification
        if avg_brightness > thresholds.indoor_bright_thresh:
            return self._classify_bright_indoor(
                features, natural_light_hints, is_designer_lit, is_likely_home_environment,
                p365_context, diagnostics
            )
        elif avg_brightness > thresholds.indoor_moderate_thresh:
            return self._classify_moderate_indoor(
                features, is_designer_lit, is_likely_home_environment, p365_context, diagnostics
            )
        else:
            return self._classify_dim_indoor(features, diagnostics)

    def _classify_bright_indoor(self, features: Dict[str, Any], natural_light_hints: float,
                               is_designer_lit: bool, is_likely_home_environment: bool,
                               p365_context: Dict[str, Any], diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify bright indoor lighting conditions."""
        mapped_scene = p365_context["mapped_scene"]
        sky_blue_in_sky_region = features.get("sky_region_blue_dominance", 0.0)
        sky_region_is_brighter = features.get("sky_region_brightness_ratio", 1.0) > 1.05

        # Natural residential lighting
        if (natural_light_hints >= 1.5 and
            (is_likely_home_environment or any(kw in mapped_scene for kw in ["home", "residential", "living", "bedroom"]))):
            return {
                "time_of_day": "indoor_residential_natural",
                "confidence": 0.82
            }

        # Designer residential lighting
        elif (is_designer_lit and
              (is_likely_home_environment or any(kw in mapped_scene for kw in ["home", "designer", "modern_interior"]))):
            return {
                "time_of_day": "indoor_designer_residential",
                "confidence": 0.85
            }

        # Mixed natural/artificial lighting
        elif sky_blue_in_sky_region > 0.03 and sky_region_is_brighter:
            return {
                "time_of_day": "indoor_bright_natural_mix",
                "confidence": 0.78
            }

        # Pure artificial lighting
        else:
            return {
                "time_of_day": "indoor_bright_artificial",
                "confidence": 0.75
            }

    def _classify_moderate_indoor(self, features: Dict[str, Any], is_designer_lit: bool,
                                 is_likely_home_environment: bool, p365_context: Dict[str, Any],
                                 diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify moderate brightness indoor lighting conditions."""
        mapped_scene = p365_context["mapped_scene"]
        confidence = p365_context["confidence"]
        warm_ratio = features.get("warm_ratio", 0.0)
        yellow_orange_ratio = features.get("yellow_orange_ratio", 0.0)

        # Designer residential lighting
        if (is_designer_lit and
            (is_likely_home_environment or any(kw in mapped_scene for kw in ["home", "designer"]))):
            return {
                "time_of_day": "indoor_designer_residential",
                "confidence": 0.78
            }

        # Restaurant/bar lighting
        elif warm_ratio > 0.35 and yellow_orange_ratio > 0.1:
            return self._classify_restaurant_bar_lighting(
                p365_context, features, diagnostics
            )

        # Standard moderate artificial
        else:
            return {
                "time_of_day": "indoor_moderate_artificial",
                "confidence": 0.70
            }

    def _classify_restaurant_bar_lighting(self, p365_context: Dict[str, Any],
                                         features: Dict[str, Any],
                                         diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify restaurant/bar specific lighting conditions."""
        mapped_scene = p365_context["mapped_scene"]
        confidence = p365_context["confidence"]

        # Strong P365 restaurant/bar confirmation
        if (any(kw in mapped_scene for kw in self.P365_INDOOR_RESTAURANT_KEYWORDS) and
            confidence > self.P365_SCENE_MODERATE_CONF_THRESHOLD):
            diagnostics["visual_analysis_reason"] = (
                "Visual: Moderate warm tones. P365 context confirms restaurant/bar."
            )
            return {
                "time_of_day": "indoor_restaurant_bar",
                "confidence": 0.80 + confidence * 0.15
            }

        # P365 outdoor conflict detection
        elif (any(kw in mapped_scene for kw in self.P365_OUTDOOR_SCENE_KEYWORDS) and
              confidence > self.P365_SCENE_MODERATE_CONF_THRESHOLD):
            diagnostics["visual_analysis_reason"] = (
                "Visual: Moderate warm. CONFLICT: LA says indoor but P365 scene is outdoor. "
                "Defaulting to general indoor artificial."
            )
            diagnostics["conflict_is_indoor_vs_p365_scene_for_restaurant_bar"] = True
            return {
                "time_of_day": "indoor_moderate_artificial",
                "confidence": 0.55
            }

        # Neutral P365 context
        else:
            diagnostics["visual_analysis_reason"] = (
                "Visual: Moderate warm tones, typical of restaurant/bar. P365 context neutral or weak."
            )
            return {
                "time_of_day": "indoor_restaurant_bar",
                "confidence": 0.70
            }

    def _classify_dim_indoor(self, features: Dict[str, Any],
                            diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify dim indoor lighting conditions."""
        warm_ratio = features.get("warm_ratio", 0.0)
        yellow_orange_ratio = features.get("yellow_orange_ratio", 0.0)

        if warm_ratio > 0.45 and yellow_orange_ratio > 0.15:
            return {
                "time_of_day": "indoor_dim_warm",
                "confidence": 0.75
            }
        else:
            return {
                "time_of_day": "indoor_dim_general",
                "confidence": 0.70
            }

    def _analyze_outdoor_visual_features(self, features: Dict[str, Any], p365_context: Dict[str, Any],
                                        diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze visual features for outdoor lighting conditions."""
        avg_brightness = features.get("avg_brightness", 128.0)
        thresholds = self.config_manager.lighting_thresholds

        # P365 enhanced street scene analysis
        street_result = self._analyze_p365_enhanced_street_scenes(
            features, p365_context, diagnostics
        )
        if street_result["determined"]:
            return street_result

        # Brightness-based outdoor classification
        if avg_brightness < thresholds.outdoor_night_thresh_brightness:
            return self._classify_night_outdoor(features, diagnostics)
        elif (avg_brightness < thresholds.outdoor_dusk_dawn_thresh_brightness and
              self._check_warm_sunset_conditions(features)):
            return self._classify_sunset_sunrise(features, p365_context, diagnostics)
        elif avg_brightness > thresholds.outdoor_day_bright_thresh:
            return self._classify_bright_day_outdoor(features, diagnostics)
        elif avg_brightness > thresholds.outdoor_day_cloudy_thresh:
            return self._classify_cloudy_day_outdoor(features, diagnostics)
        else:
            return self._classify_general_outdoor(features, diagnostics)

    def _analyze_p365_enhanced_street_scenes(self, features: Dict[str, Any], p365_context: Dict[str, Any],
                                            diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze outdoor scenes with Places365 street context enhancement."""
        mapped_scene = p365_context["mapped_scene"]
        confidence = p365_context["confidence"]
        thresholds = self.config_manager.lighting_thresholds

        # Check for street scene with warm lighting
        is_street_scene = (
            any(kw in mapped_scene for kw in ["street", "city", "road", "urban", "downtown", "intersection"]) and
            confidence > self.P365_SCENE_MODERATE_CONF_THRESHOLD and
            features.get("color_atmosphere") == "warm"
        )

        if not is_street_scene:
            return {"determined": False, "time_of_day": "unknown", "confidence": 0.5}

        avg_brightness = features.get("avg_brightness", 128.0)
        bright_spots_overall = features.get("bright_spot_count", 0)

        # Night with street lights
        if (avg_brightness < thresholds.outdoor_night_thresh_brightness and
            bright_spots_overall > thresholds.outdoor_night_lights_thresh):
            diagnostics["visual_analysis_reason"] = (
                f"P365 outdoor scene '{mapped_scene}' + visual low-warm light with spots -> night_with_lights."
            )
            return {
                "determined": True,
                "time_of_day": "night_with_lights",
                "confidence": 0.88 + confidence * 0.1
            }

        # Sunset/sunrise conditions
        elif avg_brightness >= thresholds.outdoor_night_thresh_brightness:
            diagnostics["visual_analysis_reason"] = (
                f"P365 outdoor scene '{mapped_scene}' + visual moderate-warm light -> sunset/sunrise."
            )
            return {
                "determined": True,
                "time_of_day": "sunset_sunrise",
                "confidence": 0.88 + confidence * 0.1
            }

        # Very dark conditions
        else:
            diagnostics["visual_analysis_reason"] = (
                f"P365 outdoor scene '{mapped_scene}' + visual very low light -> night_dark."
            )
            return {
                "determined": True,
                "time_of_day": "night_dark",
                "confidence": 0.75 + confidence * 0.1
            }

    def _classify_night_outdoor(self, features: Dict[str, Any],
                               diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify nighttime outdoor conditions."""
        bright_spots_overall = features.get("bright_spot_count", 0)
        dark_pixel_ratio = features.get("dark_pixel_ratio", 0.0)
        thresholds = self.config_manager.lighting_thresholds

        if bright_spots_overall > thresholds.outdoor_night_lights_thresh:
            confidence = 0.82 + min(0.13, dark_pixel_ratio / 2.5)
            diagnostics["visual_analysis_reason"] = "Visual: Low brightness with light sources (street/car lights)."
            return {
                "time_of_day": "night_with_lights",
                "confidence": confidence
            }
        else:
            confidence = 0.78 + min(0.17, dark_pixel_ratio / 1.8)
            diagnostics["visual_analysis_reason"] = "Visual: Very low brightness outdoor, deep night."
            return {
                "time_of_day": "night_dark",
                "confidence": confidence
            }

    def _classify_sunset_sunrise(self, features: Dict[str, Any], p365_context: Dict[str, Any],
                                diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify sunset/sunrise outdoor conditions."""
        yellow_orange_ratio = features.get("yellow_orange_ratio", 0.0)
        confidence = 0.75 + min(0.20, yellow_orange_ratio / 1.5)

        diagnostics["visual_analysis_reason"] = "Visual: Moderate brightness, warm tones -> sunset/sunrise."

        # P365 natural scene boost
        mapped_scene = p365_context["mapped_scene"]
        p365_confidence = p365_context["confidence"]

        if (any(kw in mapped_scene for kw in ["beach", "mountain", "lake", "ocean", "desert", "field", "natural_landmark", "sky"]) and
            p365_confidence > self.P365_SCENE_MODERATE_CONF_THRESHOLD):
            confidence = min(0.95, confidence + 0.15)
            diagnostics["visual_analysis_reason"] += f" P365 natural scene '{mapped_scene}' supports."

        return {
            "time_of_day": "sunset_sunrise",
            "confidence": confidence
        }

    def _classify_bright_day_outdoor(self, features: Dict[str, Any],
                                    diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify bright daytime outdoor conditions."""
        sky_like_blue_in_sky_region = features.get("sky_region_blue_dominance", 0.0)
        sky_region_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0)
        texture_complexity = features.get("top_region_texture_complexity", 0.5)
        thresholds = self.config_manager.lighting_thresholds

        # Clear sky conditions
        if (sky_like_blue_in_sky_region > thresholds.outdoor_day_blue_thresh or
            (sky_region_brightness_ratio > 1.05 and texture_complexity < 0.4)):

            confidence = 0.80 + min(0.15, sky_like_blue_in_sky_region * 2 +
                                  (sky_like_blue_in_sky_region * 1.5 if sky_region_brightness_ratio > 1.05 else 0))
            diagnostics["visual_analysis_reason"] = "Visual: High brightness with blue/sky tones or bright smooth top."

            return {
                "time_of_day": "day_clear",
                "confidence": confidence
            }

        # Stadium/floodlit detection
        brightness_uniformity = features.get("brightness_uniformity", 0.0)
        bright_spots_overall = features.get("bright_spot_count", 0)

        if (brightness_uniformity > 0.70 and
            bright_spots_overall > thresholds.stadium_min_spots_thresh):
            diagnostics["visual_analysis_reason"] = (
                "Visual: Very bright, uniform lighting with multiple sources, suggests floodlights (Outdoor)."
            )
            return {
                "time_of_day": "stadium_or_floodlit_area",
                "confidence": 0.78
            }

        # General bright day
        diagnostics["visual_analysis_reason"] = "Visual: High brightness outdoor, specific sky features unclear."
        return {
            "time_of_day": "day_bright_general",
            "confidence": 0.68
        }

    def _classify_cloudy_day_outdoor(self, features: Dict[str, Any],
                                    diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify cloudy daytime outdoor conditions."""
        sky_region_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0)
        texture_complexity = features.get("top_region_texture_complexity", 0.5)
        avg_saturation = features.get("avg_saturation", 100.0)
        gray_ratio = features.get("gray_ratio", 0.0)
        brightness_uniformity = features.get("brightness_uniformity", 0.0)
        thresholds = self.config_manager.lighting_thresholds

        # Overcast conditions
        if (sky_region_brightness_ratio > 1.05 and texture_complexity < 0.45 and avg_saturation < 70):
            confidence = 0.75 + min(0.20, gray_ratio / 1.5 + (brightness_uniformity - 0.5) / 1.5)
            diagnostics["visual_analysis_reason"] = (
                "Visual: Good brightness, uniform bright top, lower saturation -> overcast."
            )
            return {
                "time_of_day": "day_cloudy_overcast",
                "confidence": confidence
            }

        # Gray cloudy conditions
        elif gray_ratio > thresholds.outdoor_day_gray_thresh:
            confidence = 0.72 + min(0.23, gray_ratio / 1.8)
            diagnostics["visual_analysis_reason"] = "Visual: Good brightness with higher gray tones."
            return {
                "time_of_day": "day_cloudy_gray",
                "confidence": confidence
            }

        # General bright outdoor
        else:
            diagnostics["visual_analysis_reason"] = "Visual: Bright outdoor, specific type less clear."
            return {
                "time_of_day": "day_bright_general",
                "confidence": 0.68
            }

    def _classify_general_outdoor(self, features: Dict[str, Any],
                                 diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Classify general outdoor conditions when specific patterns are unclear."""
        color_atmosphere = features.get("color_atmosphere", "neutral")
        yellow_orange_ratio = features.get("yellow_orange_ratio", 0.0)
        sky_like_blue_in_sky_region = features.get("sky_region_blue_dominance", 0.0)

        # Potential sunset/sunrise with low confidence
        if color_atmosphere == "warm" and yellow_orange_ratio > 0.08:
            diagnostics["visual_analysis_reason"] = (
                "Visual: Outdoor, specific conditions less clear; broader visual cues suggest warm lighting."
            )
            return {
                "time_of_day": "sunset_sunrise_low_confidence",
                "confidence": 0.62
            }

        # Potential hazy day conditions
        elif sky_like_blue_in_sky_region > 0.02:
            diagnostics["visual_analysis_reason"] = (
                "Visual: Outdoor, specific conditions less clear; some blue tones suggest daylight."
            )
            return {
                "time_of_day": "day_hazy_or_partly_cloudy",
                "confidence": 0.62
            }

        # Unknown outdoor daylight
        else:
            diagnostics["visual_analysis_reason"] = (
                "Visual: Outdoor, specific conditions less clear; broader visual cues."
            )
            return {
                "time_of_day": "outdoor_unknown_daylight",
                "confidence": 0.58
            }

    def _apply_commercial_indoor_refinement(self, features: Dict[str, Any], p365_context: Dict[str, Any],
                                           time_of_day: str, confidence: float) -> Dict[str, Any]:
        """Apply commercial indoor lighting refinement if conditions are met."""
        # Skip if already classified as residential, restaurant, or bar
        if any(category in time_of_day for category in ["residential", "restaurant", "bar"]):
            return {"time_of_day": time_of_day, "confidence": confidence}

        # Skip if P365 suggests home environment
        mapped_scene = p365_context["mapped_scene"]
        if any(kw in mapped_scene for kw in ["home", "residential"]):
            return {"time_of_day": time_of_day, "confidence": confidence}

        # Check commercial lighting indicators
        avg_brightness = features.get("avg_brightness", 100.0)
        bright_spots_overall = features.get("bright_spot_count", 0)
        light_dist_uniformity = features.get("light_distribution_uniformity", 0.5)
        ceiling_likelihood = features.get("ceiling_likelihood", 0.0)
        thresholds = self.config_manager.lighting_thresholds

        if (avg_brightness > thresholds.commercial_min_brightness_thresh and
            bright_spots_overall > thresholds.commercial_min_spots_thresh and
            (light_dist_uniformity > 0.5 or ceiling_likelihood > 0.4)):

            refined_confidence = 0.70 + min(0.2, bright_spots_overall * 0.02)
            return {
                "time_of_day": "indoor_commercial",
                "confidence": refined_confidence
            }

        return {"time_of_day": time_of_day, "confidence": confidence}

    def _apply_special_lighting_refinement(self, time_of_day: str, confidence: float,
                                          features: Dict[str, Any], is_indoor: bool,
                                          p365_context: Dict[str, Any],
                                          diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Apply special lighting refinement for neon and sodium vapor lighting."""
        # Apply commercial refinement for indoor scenes first
        if is_indoor:
            commercial_result = self._apply_commercial_indoor_refinement(
                features, p365_context, time_of_day, confidence
            )
            time_of_day = commercial_result["time_of_day"]
            confidence = commercial_result["confidence"]

        # Check for neon/sodium vapor lighting conditions
        is_current_night_or_dim_warm = "night" in time_of_day or time_of_day == "indoor_dim_warm"

        if not is_current_night_or_dim_warm:
            return {"time_of_day": time_of_day, "confidence": confidence}

        # Extract features for neon detection
        yellow_orange_ratio = features.get("yellow_orange_ratio", 0.0)
        bright_spots_overall = features.get("bright_spot_count", 0)
        color_atmosphere = features.get("color_atmosphere", "neutral")
        avg_saturation = features.get("avg_saturation", 0.0)

        # Get neon detection thresholds
        thresholds = self.config_manager.lighting_thresholds

        # Check neon lighting conditions
        if (yellow_orange_ratio > thresholds.neon_yellow_orange_thresh and
            bright_spots_overall > thresholds.neon_bright_spots_thresh and
            color_atmosphere == "warm" and
            avg_saturation > thresholds.neon_avg_saturation_thresh):

            old_time_of_day = time_of_day
            old_confidence = confidence

            # Check P365 context for neon scenes
            mapped_scene = p365_context["mapped_scene"]
            attributes = p365_context["attributes"]
            is_p365_neon_context = (
                any(kw in mapped_scene for kw in ["neon", "nightclub", "bar_neon"]) or
                "neon" in attributes
            )

            if is_indoor:
                if (is_p365_neon_context or
                    any(kw in mapped_scene for kw in self.P365_INDOOR_RESTAURANT_KEYWORDS)):
                    time_of_day = "indoor_neon_lit"
                    confidence = max(confidence, 0.80)
                else:
                    time_of_day = "indoor_dim_warm_neon_accent"
                    confidence = max(confidence, 0.77)
            else:
                if (is_p365_neon_context or
                    any(kw in mapped_scene for kw in ["street_night", "city_night", "downtown_night"])):
                    time_of_day = "neon_or_sodium_vapor_night"
                    confidence = max(confidence, 0.82)
                else:
                    time_of_day = "night_with_neon_lights"
                    confidence = max(confidence, 0.79)

            # Record the refinement
            diagnostics["special_lighting_detected"] = (
                f"Refined from {old_time_of_day} (Conf:{old_confidence:.2f}) "
                f"to {time_of_day} (Conf:{confidence:.2f}) due to neon/sodium vapor light characteristics. "
                f"P365 Context: {mapped_scene if is_p365_neon_context else 'N/A'}."
            )

        return {"time_of_day": time_of_day, "confidence": confidence}

    def _combine_attribute_and_visual_results(self, attribute_result: Dict[str, Any],
                                             visual_result: Dict[str, Any],
                                             diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Combine Places365 attribute and visual analysis results."""
        # If visual analysis provided a different and potentially more nuanced result
        if (attribute_result["time_of_day"] != visual_result["time_of_day"] and
            visual_result["confidence"] > 0.65):

            diagnostics["final_decision_source"] = "Visual features (potentially P365-context-refined)."
            diagnostics["p365_attr_overridden_by_visual"] = (
                f"P365 Attr ToD {attribute_result['time_of_day']} "
                f"(Conf {attribute_result['confidence']:.2f}) was less certain or overridden by "
                f"visual logic result {visual_result['time_of_day']} (Conf {visual_result['confidence']:.2f})."
            )
            return visual_result

        # Use attribute result if it was more confident
        elif attribute_result["confidence"] >= visual_result["confidence"]:
            diagnostics["final_decision_source"] = "High-confidence P365 attribute."
            return attribute_result

        # Use visual result
        else:
            diagnostics["final_decision_source"] = "Visual features (potentially P365-context-refined)."
            return visual_result

    def _check_home_environment_pattern(self, features: Dict[str, Any]) -> bool:
        """Check if features indicate a home/residential environment pattern."""
        thresholds = self.config_manager.indoor_outdoor_thresholds
        return features.get("home_environment_pattern", 0.0) > thresholds.home_pattern_thresh_moderate * 0.7

    def _check_warm_sunset_conditions(self, features: Dict[str, Any]) -> bool:
        """Check if features indicate warm sunset/sunrise lighting conditions."""
        thresholds = self.config_manager.lighting_thresholds
        yellow_orange_ratio = features.get("yellow_orange_ratio", 0.0)
        color_atmosphere = features.get("color_atmosphere", "neutral")
        sky_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0)

        return (yellow_orange_ratio > thresholds.outdoor_dusk_dawn_color_thresh and
                color_atmosphere == "warm" and
                sky_brightness_ratio < 1.5)

    def _get_default_lighting_result(self) -> Dict[str, Any]:
        """Return default lighting analysis result in case of errors."""
        return {
            "time_of_day": "unknown",
            "confidence": 0.5,
            "diagnostics": {
                "error": "Lighting analysis failed, using default values"
            }
        }