Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,805 Bytes
c82d44a 7eaf3d5 56014c2 984ba7f 7eaf3d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import sqlite3
import gradio as gr
from dog_database import get_dog_description, dog_data
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from smart_breed_matcher import SmartBreedMatcher
from description_search_ui import create_description_search_tab
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
with gr.TabItem("Breed Recommendation"):
with gr.Tabs():
with gr.Tab("Find by Criteria"):
gr.HTML("<p style='text-align: center;'>Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!</p>")
with gr.Row():
with gr.Column():
living_space = gr.Radio(
choices=["apartment", "house_small", "house_large"],
label="What type of living space do you have?",
info="Choose your current living situation",
value="apartment"
)
exercise_time = gr.Slider(
minimum=0,
maximum=180,
value=60,
label="Daily exercise time (minutes)",
info="Consider walks, play time, and training"
)
grooming_commitment = gr.Radio(
choices=["low", "medium", "high"],
label="Grooming commitment level",
info="Low: monthly, Medium: weekly, High: daily",
value="medium"
)
with gr.Column():
experience_level = gr.Radio(
choices=["beginner", "intermediate", "advanced"],
label="Dog ownership experience",
info="Be honest - this helps find the right match",
value="beginner"
)
has_children = gr.Checkbox(
label="Have children at home",
info="Helps recommend child-friendly breeds"
)
noise_tolerance = gr.Radio(
choices=["low", "medium", "high"],
label="Noise tolerance level",
info="Some breeds are more vocal than others",
value="medium"
)
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
recommendation_output = gr.HTML(label="Breed Recommendations")
with gr.Tab("Find by Description"):
description_input, description_search_btn, description_output = create_description_search_tab()
def on_find_match_click(*args):
try:
user_prefs = UserPreferences(
living_space=args[0],
exercise_time=args[1],
grooming_commitment=args[2],
experience_level=args[3],
has_children=args[4],
noise_tolerance=args[5],
space_for_play=True if args[0] != "apartment" else False,
other_pets=False,
climate="moderate",
health_sensitivity="medium", # 新增: 默認中等敏感度
barking_acceptance=args[5] # 使用 noise_tolerance 作為 barking_acceptance
)
recommendations = get_breed_recommendations(user_prefs, top_n=10)
history_results = [{
'breed': rec['breed'],
'rank': rec['rank'],
'overall_score': rec['final_score'],
'base_score': rec['base_score'],
'bonus_score': rec['bonus_score'],
'scores': rec['scores']
} for rec in recommendations]
# 保存到歷史記錄,也需要更新保存的偏好設定
history_component.save_search(
user_preferences={
'living_space': args[0],
'exercise_time': args[1],
'grooming_commitment': args[2],
'experience_level': args[3],
'has_children': args[4],
'noise_tolerance': args[5],
'health_sensitivity': "medium",
'barking_acceptance': args[5]
},
results=history_results
)
return format_recommendation_html(recommendations)
except Exception as e:
print(f"Error in find match: {str(e)}")
import traceback
print(traceback.format_exc())
return "Error getting recommendations"
def on_description_search(description: str):
try:
matcher = SmartBreedMatcher(dog_data)
breed_recommendations = matcher.match_user_preference(description, top_n=10)
# 創建基本的 UserPreferences
user_prefs = UserPreferences(
living_space="apartment" if "apartment" in description.lower() else "house_small",
exercise_time=60,
grooming_commitment="medium",
experience_level="intermediate",
has_children="children" in description.lower() or "kids" in description.lower(),
noise_tolerance="medium",
space_for_play=True if "yard" in description.lower() or "garden" in description.lower() else False,
other_pets=False,
climate="moderate",
health_sensitivity="medium",
barking_acceptance=None
)
final_recommendations = []
for smart_rec in breed_recommendations:
breed_name = smart_rec['breed']
breed_info = get_dog_description(breed_name)
if not isinstance(breed_info, dict):
continue
# 計算基礎相容性分數
compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
# 最終分數計算
is_preferred = smart_rec.get('is_preferred', False)
base_score = compatibility_scores.get('overall', 0.7)
smart_score = smart_rec['score']
# 根據是否為偏好品種調整分數
if is_preferred:
final_score = 0.95 # 確保最高分
else:
# 相似品種的分數計算
final_score = min(0.90, (base_score * 0.6 + smart_score * 0.4))
final_recommendations.append({
'rank': 0, # 稍後更新
'breed': breed_name,
'base_score': round(base_score, 4),
'smart_match_score': round(smart_score, 4),
'final_score': round(final_score, 4),
'scores': compatibility_scores,
'match_reason': smart_rec['reason'],
'info': breed_info,
'noise_info': breed_noise_info.get(breed_name, {}),
'health_info': breed_health_info.get(breed_name, {})
})
# 根據final_score重新排序
final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
# 更新排名
for i, rec in enumerate(final_recommendations, 1):
rec['rank'] = i
# 驗證排序
print("\nFinal Rankings:")
for rec in final_recommendations:
print(f"#{rec['rank']} {rec['breed']}")
print(f"Base Score: {rec['base_score']:.4f}")
print(f"Smart Match Score: {rec['smart_match_score']:.4f}")
print(f"Final Score: {rec['final_score']:.4f}")
print(f"Reason: {rec['match_reason']}\n")
# 確保分數按降序排列
if rec['rank'] > 1:
prev_score = final_recommendations[rec['rank']-2]['final_score']
if rec['final_score'] > prev_score:
print(f"Warning: Ranking inconsistency detected!")
print(f"#{rec['rank']-1} score: {prev_score:.4f}")
print(f"#{rec['rank']} score: {rec['final_score']:.4f}")
return format_recommendation_html(final_recommendations)
except Exception as e:
print(f"Error in description search: {str(e)}")
import traceback
print(traceback.format_exc())
return "Error processing your description"
get_recommendations_btn.click(
fn=on_find_match_click,
inputs=[
living_space,
exercise_time,
grooming_commitment,
experience_level,
has_children,
noise_tolerance
],
outputs=recommendation_output
)
description_search_btn.click(
fn=on_description_search,
inputs=[description_input],
outputs=[description_output]
)
return {
'living_space': living_space,
'exercise_time': exercise_time,
'grooming_commitment': grooming_commitment,
'experience_level': experience_level,
'has_children': has_children,
'noise_tolerance': noise_tolerance,
'get_recommendations_btn': get_recommendations_btn,
'recommendation_output': recommendation_output,
'description_input': description_input,
'description_search_btn': description_search_btn,
'description_output': description_output
}
|