Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,706 Bytes
d26f860 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 |
import torch
import re
import numpy as np
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import dog_data
from scoring_calculation_system import UserPreferences
from sentence_transformers import SentenceTransformer, util
class SmartBreedMatcher:
def __init__(self, dog_data: List[Tuple]):
self.dog_data = dog_data
self.model = SentenceTransformer('all-mpnet-base-v2')
self._embedding_cache = {}
self._clear_cache()
def _clear_cache(self):
self._embedding_cache = {}
def _get_cached_embedding(self, text: str) -> torch.Tensor:
if text not in self._embedding_cache:
self._embedding_cache[text] = self.model.encode(text)
return self._embedding_cache[text]
def _categorize_breeds(self) -> Dict:
"""自動將狗品種分類"""
categories = {
'working_dogs': [],
'herding_dogs': [],
'hunting_dogs': [],
'companion_dogs': [],
'guard_dogs': []
}
for breed_info in self.dog_data:
description = breed_info[9].lower()
temperament = breed_info[4].lower()
# 根據描述和性格特徵自動分類
if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
categories['herding_dogs'].append(breed_info[1])
elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
categories['hunting_dogs'].append(breed_info[1])
elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
categories['companion_dogs'].append(breed_info[1])
elif any(word in description for word in ['guard', 'protection', 'watchdog']):
categories['guard_dogs'].append(breed_info[1])
elif any(word in description for word in ['working', 'draft', 'cart']):
categories['working_dogs'].append(breed_info[1])
return categories
def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
"""
找出與指定品種最相似的其他品種
Args:
breed_name: 目標品種名稱
top_n: 返回的相似品種數量
Returns:
List[Tuple[str, float]]: 相似品種列表,包含品種名稱和相似度分數
"""
try:
target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
if not target_breed:
return []
# 獲取完整的目標品種特徵
target_features = {
'breed_name': target_breed[1],
'size': target_breed[2],
'temperament': target_breed[4],
'exercise': target_breed[7],
'grooming': target_breed[8],
'description': target_breed[9],
'good_with_children': target_breed[6] # 添加這個特徵
}
similarities = []
for breed in self.dog_data:
if breed[1] != breed_name:
breed_features = {
'breed_name': breed[1],
'size': breed[2],
'temperament': breed[4],
'exercise': breed[7],
'grooming': breed[8],
'description': breed[9],
'good_with_children': breed[6] # 添加這個特徵
}
try:
similarity_score = self._calculate_breed_similarity(target_features, breed_features)
# 確保分數在有效範圍內
similarity_score = min(1.0, max(0.0, similarity_score))
similarities.append((breed[1], similarity_score))
except Exception as e:
print(f"Error calculating similarity for {breed[1]}: {str(e)}")
continue
# 根據相似度排序並返回前N個
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
except Exception as e:
print(f"Error in find_similar_breeds: {str(e)}")
return []
def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict, weights: Dict[str, float]) -> float:
try:
# 1. 基礎相似度計算
size_similarity = self._calculate_size_similarity_enhanced(
breed1_features.get('size', 'Medium'),
breed2_features.get('size', 'Medium'),
breed2_features.get('description', '')
)
exercise_similarity = self._calculate_exercise_similarity_enhanced(
breed1_features.get('exercise', 'Moderate'),
breed2_features.get('exercise', 'Moderate')
)
# 性格相似度
temp1_embedding = self._get_cached_embedding(breed1_features.get('temperament', ''))
temp2_embedding = self._get_cached_embedding(breed2_features.get('temperament', ''))
temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
# 其他相似度
grooming_similarity = self._calculate_grooming_similarity(
breed1_features.get('breed_name', ''),
breed2_features.get('breed_name', '')
)
health_similarity = self._calculate_health_score_similarity(
breed1_features.get('breed_name', ''),
breed2_features.get('breed_name', '')
)
noise_similarity = self._calculate_noise_similarity(
breed1_features.get('breed_name', ''),
breed2_features.get('breed_name', '')
)
# 2. 關鍵特徵評分
feature_scores = {}
for feature, similarity in {
'size': size_similarity,
'exercise': exercise_similarity,
'temperament': temperament_similarity,
'grooming': grooming_similarity,
'health': health_similarity,
'noise': noise_similarity
}.items():
# 根據權重調整每個特徵分數
importance = weights.get(feature, 0.1)
if importance > 0.3: # 高權重特徵
if similarity < 0.5: # 若關鍵特徵匹配度低
feature_scores[feature] = similarity * 0.5 # 大幅降低分數
else:
feature_scores[feature] = similarity * 1.2 # 提高匹配度好的分數
else: # 一般特徵
feature_scores[feature] = similarity
# 3. 計算最終相似度
weighted_sum = 0
weight_sum = 0
for feature, score in feature_scores.items():
feature_weight = weights.get(feature, 0.1)
weighted_sum += score * feature_weight
weight_sum += feature_weight
final_similarity = weighted_sum / weight_sum if weight_sum > 0 else 0.5
return min(1.0, max(0.2, final_similarity)) # 設定最低分數為0.2
except Exception as e:
print(f"Error in calculate_breed_similarity: {str(e)}")
return 0.5
def get_breed_characteristics_score(self, breed_features: Dict, description: str) -> float:
score = 1.0
description_lower = description.lower()
breed_score_multipliers = []
# 運動需求評估
exercise_needs = breed_features.get('exercise', 'Moderate')
exercise_keywords = ['active', 'running', 'energetic', 'athletic']
if any(keyword in description_lower for keyword in exercise_keywords):
multipliers = {
'Very High': 1.5,
'High': 1.3,
'Moderate': 0.7,
'Low': 0.4
}
breed_score_multipliers.append(multipliers.get(exercise_needs, 1.0))
# 體型評估
size = breed_features.get('size', 'Medium')
if 'apartment' in description_lower:
size_multipliers = {
'Giant': 0.3,
'Large': 0.6,
'Medium-Large': 0.8,
'Medium': 1.4,
'Small': 1.0,
'Tiny': 0.9
}
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
elif 'house' in description_lower:
size_multipliers = {
'Giant': 0.8,
'Large': 1.2,
'Medium-Large': 1.3,
'Medium': 1.2,
'Small': 0.9,
'Tiny': 0.7
}
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
# 家庭適應性評估
if any(keyword in description_lower for keyword in ['family', 'children', 'kids']):
good_with_children = breed_features.get('good_with_children', False)
breed_score_multipliers.append(1.3 if good_with_children else 0.6)
# 噪音評估
if 'quiet' in description_lower:
noise_level = breed_features.get('noise_level', 'Moderate')
noise_multipliers = {
'Low': 1.3,
'Moderate': 0.9,
'High': 0.5
}
breed_score_multipliers.append(noise_multipliers.get(noise_level, 1.0))
# 應用所有乘數
for multiplier in breed_score_multipliers:
score *= multiplier
# 確保分數在合理範圍內
return min(1.5, max(0.3, score))
def _calculate_size_similarity_enhanced(self, size1: str, size2: str, description: str) -> float:
"""
增強版尺寸相似度計算
"""
try:
# 更細緻的尺寸映射
size_map = {
'Tiny': 0,
'Small': 1,
'Small-Medium': 2,
'Medium': 3,
'Medium-Large': 4,
'Large': 5,
'Giant': 6
}
# 標準化並獲取數值
value1 = size_map.get(self._normalize_size(size1), 3)
value2 = size_map.get(self._normalize_size(size2), 3)
# 基礎相似度計算
base_similarity = 1.0 - (abs(value1 - value2) / 6.0)
# 環境適應性調整
if 'apartment' in description.lower():
if size2 in ['Large', 'Giant']:
base_similarity *= 0.7 # 大型犬在公寓降低相似度
elif size2 in ['Medium', 'Medium-Large']:
base_similarity *= 1.2 # 中型犬更適合
elif size2 in ['Small', 'Tiny']:
base_similarity *= 0.8 # 過小的狗也不是最佳選擇
return min(1.0, base_similarity)
except Exception as e:
print(f"Error in calculate_size_similarity_enhanced: {str(e)}")
return 0.5
def _normalize_size(self, size: str) -> str:
"""
標準化犬種尺寸分類
Args:
size: 原始尺寸描述
Returns:
str: 標準化後的尺寸類別
"""
try:
size = size.lower()
if 'tiny' in size:
return 'Tiny'
elif 'small' in size and 'medium' in size:
return 'Small-Medium'
elif 'small' in size:
return 'Small'
elif 'medium' in size and 'large' in size:
return 'Medium-Large'
elif 'medium' in size:
return 'Medium'
elif 'giant' in size:
return 'Giant'
elif 'large' in size:
return 'Large'
return 'Medium' # 默認為 Medium
except Exception as e:
print(f"Error in normalize_size: {str(e)}")
return 'Medium'
def _calculate_exercise_similarity_enhanced(self, exercise1: str, exercise2: str) -> float:
try:
exercise_values = {
'Very High': 4,
'High': 3,
'Moderate': 2,
'Low': 1
}
value1 = exercise_values.get(exercise1, 2)
value2 = exercise_values.get(exercise2, 2)
# 計算差異
diff = abs(value1 - value2)
if diff == 0:
return 1.0
elif diff == 1:
return 0.7
elif diff == 2:
return 0.4
else:
return 0.2
except Exception as e:
print(f"Error in calculate_exercise_similarity_enhanced: {str(e)}")
return 0.5
def _calculate_grooming_similarity(self, breed1: str, breed2: str) -> float:
"""
計算美容需求相似度
Args:
breed1: 第一個品種名稱
breed2: 第二個品種名稱
Returns:
float: 相似度分數 (0-1)
"""
try:
grooming_map = {
'Low': 1,
'Moderate': 2,
'High': 3
}
# 從dog_data中獲取美容需求
breed1_info = next((dog for dog in self.dog_data if dog[1] == breed1), None)
breed2_info = next((dog for dog in self.dog_data if dog[1] == breed2), None)
if not breed1_info or not breed2_info:
return 0.5 # 數據缺失時返回中等相似度
grooming1 = breed1_info[8] # Grooming_Needs index
grooming2 = breed2_info[8]
# 獲取數值,默認為 Moderate
value1 = grooming_map.get(grooming1, 2)
value2 = grooming_map.get(grooming2, 2)
# 基礎相似度計算
base_similarity = 1.0 - (abs(value1 - value2) / 2.0)
# 美容需求調整
if grooming2 == 'Moderate':
base_similarity *= 1.1 # 中等美容需求略微加分
elif grooming2 == 'High':
base_similarity *= 0.9 # 高美容需求略微降分
return min(1.0, base_similarity)
except Exception as e:
print(f"Error in calculate_grooming_similarity: {str(e)}")
return 0.5
def _calculate_health_score_similarity(self, breed1: str, breed2: str) -> float:
"""
計算兩個品種的健康評分相似度
"""
try:
score1 = self._calculate_health_score(breed1)
score2 = self._calculate_health_score(breed2)
return 1.0 - abs(score1 - score2)
except Exception as e:
print(f"Error in calculate_health_score_similarity: {str(e)}")
return 0.5
def _calculate_health_score(self, breed_name: str) -> float:
"""
計算品種的健康評分
Args:
breed_name: 品種名稱
Returns:
float: 健康評分 (0-1)
"""
try:
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題
severe_conditions = [
'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
'bloat', 'progressive', 'syndrome'
]
# 中等健康問題
moderate_conditions = [
'allergies', 'infections', 'thyroid', 'luxation',
'skin problems', 'ear'
]
# 計算問題數量
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
# 基礎健康評分
health_score = 1.0
health_score -= (severe_count * 0.15) # 嚴重問題扣分更多
health_score -= (moderate_count * 0.05) # 中等問題扣分較少
# 確保評分在合理範圍內
return max(0.3, min(1.0, health_score))
except Exception as e:
print(f"Error in calculate_health_score: {str(e)}")
return 0.5
def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
"""計算兩個品種的噪音相似度"""
noise_levels = {
'Low': 1,
'Moderate': 2,
'High': 3,
'Unknown': 2 # 默認為中等
}
noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')
# 獲取數值級別
level1 = noise_levels.get(noise1, 2)
level2 = noise_levels.get(noise2, 2)
# 計算差異並歸一化
difference = abs(level1 - level2)
similarity = 1.0 - (difference / 2) # 最大差異是2,所以除以2來歸一化
return similarity
# bonus score zone
def _calculate_size_bonus(self, size: str, living_space: str) -> float:
"""
計算尺寸匹配的獎勵分數
Args:
size: 品種尺寸
living_space: 居住空間類型
Returns:
float: 獎勵分數 (-0.25 到 0.15)
"""
try:
if living_space == "apartment":
size_scores = {
'Tiny': -0.15,
'Small': 0.10,
'Medium': 0.15,
'Large': 0.10,
'Giant': -0.30
}
else: # house
size_scores = {
'Tiny': -0.10,
'Small': 0.05,
'Medium': 0.15,
'Large': 0.15,
'Giant': -0.15
}
return size_scores.get(size, 0.0)
except Exception as e:
print(f"Error in calculate_size_bonus: {str(e)}")
return 0.0
def _calculate_exercise_bonus(self, exercise_needs: str, exercise_time: int) -> float:
"""
計算運動需求匹配的獎勵分數
Args:
exercise_needs: 品種運動需求
exercise_time: 用戶可提供的運動時間(分鐘)
Returns:
float: 獎勵分數 (-0.20 到 0.20)
"""
try:
if exercise_time >= 120: # 高運動量需求
exercise_scores = {
'Low': -0.30,
'Moderate': -0.10,
'High': 0.15,
'Very High': 0.30
}
elif exercise_time >= 60: # 中等運動量需求
exercise_scores = {
'Low': -0.05,
'Moderate': 0.15,
'High': 0.05,
'Very High': -0.10
}
else: # 低運動量需求
exercise_scores = {
'Low': 0.15,
'Moderate': 0.05,
'High': -0.15,
'Very High': -0.20
}
return exercise_scores.get(exercise_needs, 0.0)
except Exception as e:
print(f"Error in calculate_exercise_bonus: {str(e)}")
return 0.0
def _calculate_grooming_bonus(self, grooming: str, commitment: str) -> float:
"""
計算美容需求匹配的獎勵分數
Args:
grooming: 品種美容需求
commitment: 用戶美容投入程度
Returns:
float: 獎勵分數 (-0.15 到 0.10)
"""
try:
if commitment == "high":
grooming_scores = {
'Low': -0.05,
'Moderate': 0.05,
'High': 0.10
}
else: # medium or low commitment
grooming_scores = {
'Low': 0.10,
'Moderate': 0.05,
'High': -0.20
}
return grooming_scores.get(grooming, 0.0)
except Exception as e:
print(f"Error in calculate_grooming_bonus: {str(e)}")
return 0.0
def _calculate_family_bonus(self, breed_info: Dict) -> float:
"""
計算家庭適應性的獎勵分數
Args:
breed_info: 品種信息字典
Returns:
float: 獎勵分數 (0 到 0.20)
"""
try:
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
good_with_children = breed_info.get('Good_With_Children', False)
if good_with_children:
bonus += 0.20
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
bonus += 0.10
return min(0.20, bonus)
except Exception as e:
print(f"Error in calculate_family_bonus: {str(e)}")
return 0.0
def _detect_scenario(self, description: str) -> Dict[str, float]:
"""
檢測場景並返回對應權重
"""
# 基礎場景定義
scenarios = {
'athletic': {
'keywords': ['active', 'exercise', 'running', 'athletic', 'energetic', 'sports'],
'weights': {
'exercise': 0.40,
'size': 0.25,
'temperament': 0.20,
'health': 0.15
}
},
'apartment': {
'keywords': ['apartment', 'flat', 'condo'],
'weights': {
'size': 0.35,
'noise': 0.30,
'exercise': 0.20,
'temperament': 0.15
}
},
'family': {
'keywords': ['family', 'children', 'kids', 'friendly'],
'weights': {
'temperament': 0.35,
'safety': 0.30,
'noise': 0.20,
'exercise': 0.15
}
},
'novice': {
'keywords': ['first time', 'beginner', 'new owner', 'inexperienced'],
'weights': {
'trainability': 0.35,
'temperament': 0.30,
'care_level': 0.20,
'health': 0.15
}
}
}
# 檢測匹配的場景
matched_scenarios = []
for scenario, config in scenarios.items():
if any(keyword in description.lower() for keyword in config['keywords']):
matched_scenarios.append(scenario)
# 默認權重
default_weights = {
'exercise': 0.20,
'size': 0.20,
'temperament': 0.20,
'health': 0.15,
'noise': 0.10,
'grooming': 0.10,
'trainability': 0.05
}
# 如果沒有匹配場景,返回默認權重
if not matched_scenarios:
return default_weights
# 合併匹配場景的權重
final_weights = default_weights.copy()
for scenario in matched_scenarios:
scenario_weights = scenarios[scenario]['weights']
for feature, weight in scenario_weights.items():
if feature in final_weights:
final_weights[feature] = max(final_weights[feature], weight)
return final_weights
def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
smart_score: float, is_preferred: bool,
similarity_score: float = 0.0,
characteristics_score: float = 1.0,
weights: Dict[str, float] = None) -> Dict:
try:
# 使用傳入的權重或默認權重
if weights is None:
weights = {
'base': 0.35,
'smart': 0.35,
'bonus': 0.15,
'characteristics': 0.15
}
# 確保 base_scores 包含所有必要的鍵
base_scores = {
'overall': base_scores.get('overall', smart_score),
'size': base_scores.get('size', 0.0),
'exercise': base_scores.get('exercise', 0.0),
'temperament': base_scores.get('temperament', 0.0),
'grooming': base_scores.get('grooming', 0.0),
'health': base_scores.get('health', 0.0),
'noise': base_scores.get('noise', 0.0)
}
# 計算基礎分數
base_score = base_scores['overall']
# 計算獎勵分數
bonus_score = 0.0
if is_preferred:
bonus_score = 0.95
elif similarity_score > 0:
bonus_score = min(0.8, similarity_score) * 0.95
# 特徵匹配度調整
if characteristics_score < 0.5:
base_score *= 0.7 # 降低基礎分數
smart_score *= 0.7 # 降低智能匹配分數
# 計算最終分數
final_score = (
base_score * weights.get('base', 0.35) +
smart_score * weights.get('smart', 0.35) +
bonus_score * weights.get('bonus', 0.15) +
characteristics_score * weights.get('characteristics', 0.15)
)
# 確保分數在合理範圍內
final_score = min(1.0, max(0.3, final_score))
return {
'final_score': round(final_score, 4),
'base_score': round(base_score, 4),
'smart_score': round(smart_score, 4),
'bonus_score': round(bonus_score, 4),
'characteristics_score': round(characteristics_score, 4),
'detailed_scores': base_scores
}
except Exception as e:
print(f"Error in calculate_final_scores: {str(e)}")
return {
'final_score': 0.5,
'base_score': 0.5,
'smart_score': 0.5,
'bonus_score': 0.0,
'characteristics_score': 0.5,
'detailed_scores': {
'overall': 0.5,
'size': 0.5,
'exercise': 0.5,
'temperament': 0.5,
'grooming': 0.5,
'health': 0.5,
'noise': 0.5
}
}
def _general_matching(self, description: str, weights: Dict[str, float], top_n: int = 10) -> List[Dict]:
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
try:
matches = []
desc_embedding = self._get_cached_embedding(description)
for breed in self.dog_data:
breed_name = breed[1]
breed_features = self._extract_breed_features(breed)
breed_description = breed[9]
temperament = breed[4]
breed_desc_embedding = self._get_cached_embedding(breed_description)
breed_temp_embedding = self._get_cached_embedding(temperament)
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
health_score = self._calculate_health_score(breed_name)
health_similarity = 1.0 - abs(health_score - 0.8)
# 使用傳入的權重
final_score = (
desc_similarity * weights.get('description', 0.35) +
temp_similarity * weights.get('temperament', 0.25) +
noise_similarity * weights.get('noise', 0.2) +
health_similarity * weights.get('health', 0.2)
)
# 計算特徵分數
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
# 構建完整的 scores 字典
scores = {
'overall': final_score,
'size': breed_features.get('size_score', 0.0),
'exercise': breed_features.get('exercise_score', 0.0),
'temperament': temp_similarity,
'grooming': breed_features.get('grooming_score', 0.0),
'health': health_score,
'noise': noise_similarity
}
matches.append({
'breed': breed_name,
'scores': scores,
'final_score': final_score,
'base_score': final_score,
'characteristics_score': characteristics_score,
'bonus_score': 0.0,
'is_preferred': False,
'similarity': final_score,
'health_score': health_score,
'reason': "Matched based on description and characteristics"
})
return sorted(matches, key=lambda x: (-x['characteristics_score'], -x['final_score']))[:top_n]
except Exception as e:
print(f"Error in _general_matching: {str(e)}")
return []
def _detect_breed_preference(self, description: str) -> Optional[str]:
"""檢測用戶是否提到特定品種"""
description_lower = f" {description.lower()} "
for breed_info in self.dog_data:
breed_name = breed_info[1]
normalized_breed = breed_name.lower().replace('_', ' ')
pattern = rf"\b{re.escape(normalized_breed)}\b"
if re.search(pattern, description_lower):
return breed_name
return None
def _extract_breed_features(self, breed_info: Tuple) -> Dict:
"""
從品種信息中提取特徵
Args:
breed_info: 品種信息元組
Returns:
Dict: 包含品種特徵的字典
"""
try:
return {
'breed_name': breed_info[1],
'size': breed_info[2],
'temperament': breed_info[4],
'exercise': breed_info[7],
'grooming': breed_info[8],
'description': breed_info[9],
'good_with_children': breed_info[6]
}
except Exception as e:
print(f"Error in extract_breed_features: {str(e)}")
return {
'breed_name': '',
'size': 'Medium',
'temperament': '',
'exercise': 'Moderate',
'grooming': 'Moderate',
'description': '',
'good_with_children': False
}
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
try:
# 獲取場景權重
weights = self._detect_scenario(description)
matches = []
preferred_breed = self._detect_breed_preference(description)
# 處理用戶明確提到的品種
if preferred_breed:
breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
if breed_info:
breed_features = self._extract_breed_features(breed_info)
base_similarity = self._calculate_breed_similarity(breed_features, breed_features, weights)
# 計算特徵分數
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
# 計算最終分數
scores = self._calculate_final_scores(
preferred_breed,
{'overall': base_similarity},
smart_score=base_similarity,
is_preferred=True,
similarity_score=1.0,
characteristics_score=characteristics_score,
weights=weights
)
matches.append({
'breed': preferred_breed,
'scores': scores['detailed_scores'],
'final_score': scores['final_score'],
'base_score': scores['base_score'],
'bonus_score': scores['bonus_score'],
'characteristics_score': characteristics_score,
'is_preferred': True,
'priority': 1,
'health_score': self._calculate_health_score(preferred_breed),
'reason': "Directly matched your preferred breed"
})
# 尋找相似品種
similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1)
for breed_name, similarity in similar_breeds:
if breed_name != preferred_breed:
breed_info = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
if breed_info:
breed_features = self._extract_breed_features(breed_info)
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
scores = self._calculate_final_scores(
breed_name,
{'overall': similarity},
smart_score=similarity,
is_preferred=False,
similarity_score=similarity,
characteristics_score=characteristics_score,
weights=weights
)
if scores['final_score'] >= 0.4: # 設定最低分數門檻
matches.append({
'breed': breed_name,
'scores': scores['detailed_scores'],
'final_score': scores['final_score'],
'base_score': scores['base_score'],
'bonus_score': scores['bonus_score'],
'characteristics_score': characteristics_score,
'is_preferred': False,
'priority': 2,
'health_score': self._calculate_health_score(breed_name),
'reason': f"Similar to {preferred_breed}"
})
# 如果沒有找到偏好品種或需要更多匹配
if len(matches) < top_n:
general_matches = self._general_matching(description, weights, top_n - len(matches))
for match in general_matches:
if match['breed'] not in [m['breed'] for m in matches]:
match['priority'] = 3
if match['final_score'] >= 0.4: # 分數門檻
matches.append(match)
# 最終排序
matches.sort(key=lambda x: (
-x.get('characteristics_score', 0), # 首先考慮特徵匹配度
-x.get('final_score', 0), # 然後是總分
-x.get('base_score', 0), # 最後是基礎分數
x.get('breed', '') # 字母順序
))
# 取前N個結果
final_matches = matches[:top_n]
# 更新排名
for i, match in enumerate(final_matches, 1):
match['rank'] = i
return final_matches
except Exception as e:
print(f"Error in match_user_preference: {str(e)}")
return []
|