File size: 11,405 Bytes
0ef1e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info

@dataclass
class UserPreferences:
    """使用者偏好設定的資料結構"""
    living_space: str  # "apartment", "house_small", "house_large"
    exercise_time: int  # minutes per day
    grooming_commitment: str  # "low", "medium", "high"
    experience_level: str  # "beginner", "intermediate", "advanced"
    has_children: bool
    noise_tolerance: str  # "low", "medium", "high"
    space_for_play: bool
    other_pets: bool
    climate: str  # "cold", "moderate", "hot"
    health_sensitivity: str = "medium"  # 設置默認值
    barking_acceptance: str = None

    def __post_init__(self):
        """在初始化後運行,用於設置派生值"""
        if self.barking_acceptance is None:
            self.barking_acceptance = self.noise_tolerance

    @staticmethod
    def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
        """計算品種額外加分"""
        bonus = 0.0

        # 壽命加分
        try:
            lifespan = breed_info.get('Lifespan', '10-12 years')
            years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
            longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
            bonus += longevity_bonus
        except:
            pass

        # 性格特徵加分
        temperament = breed_info.get('Temperament', '').lower()
        if user_prefs.has_children:
            if 'gentle' in temperament or 'patient' in temperament:
                bonus += 0.03

        # 適應性加分
        if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
            bonus += 0.02

        return bonus

    @staticmethod
    def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
        """計算額外的排序因素"""
        factors = {
            'versatility': 0.0,
            'health_score': 0.0,
            'adaptability': 0.0
        }

        # 計算多功能性分數
        temperament = breed_info.get('Temperament', '').lower()
        versatile_traits = ['intelligent', 'adaptable', 'versatile', 'trainable']
        factors['versatility'] = sum(trait in temperament for trait in versatile_traits) / len(versatile_traits)

        # 計算健康分數(基於預期壽命)
        lifespan = breed_info.get('Lifespan', '10-12 years')
        try:
            years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
            factors['health_score'] = min(1.0, max(years) / 15)  # 標準化到0-1範圍
        except:
            factors['health_score'] = 0.5  # 預設值

        # 計算適應性分數
        size = breed_info.get('Size', 'Medium')
        factors['adaptability'] = {
            'Small': 0.9,
            'Medium': 0.7,
            'Large': 0.5,
            'Giant': 0.3
        }.get(size, 0.5)

        return factors


def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
    """計算品種與使用者條件的相容性分數"""
    scores = {}
    try:
        # 1. 空間相容性計算
        def calculate_space_score(size, living_space, has_yard):
            base_scores = {
                "Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90},
                "Medium": {"apartment": 0.65, "house_small": 0.90, "house_large": 1.0},
                "Large": {"apartment": 0.35, "house_small": 0.75, "house_large": 1.0},
                "Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0}
            }

            base_score = base_scores.get(size, base_scores["Medium"])[living_space]
            adjustments = 0

            # 特殊情況調整
            if living_space == "apartment":
                if size == "Small":
                    adjustments += 0.05
                elif size in ["Large", "Giant"]:
                    adjustments -= 0.15

            if has_yard and living_space in ["house_small", "house_large"]:
                adjustments += 0.05

            return min(1.0, max(0, base_score + adjustments))

        # 2. 運動相容性計算
        def calculate_exercise_score(breed_exercise_needs, user_exercise_time):
            exercise_needs = {
                'VERY HIGH': 120,
                'HIGH': 90,
                'MODERATE': 60,
                'LOW': 30,
                'VARIES': 60
            }

            breed_need = exercise_needs.get(breed_exercise_needs.strip().upper(), 60)
            difference = abs(user_exercise_time - breed_need) / breed_need

            if difference == 0:
                return 1.0
            elif difference <= 0.2:
                return 0.95
            elif difference <= 0.4:
                return 0.85
            elif difference <= 0.6:
                return 0.70
            elif difference <= 0.8:
                return 0.50
            else:
                return 0.30

        # 3. 美容需求計算
        def calculate_grooming_score(breed_grooming_needs, user_commitment, breed_size):
            base_scores = {
                "High": {"low": 0.3, "medium": 0.7, "high": 1.0},
                "Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0},
                "Low": {"low": 1.0, "medium": 0.95, "high": 0.9}
            }

            base_score = base_scores.get(breed_grooming_needs, base_scores["Moderate"])[user_commitment]

            if breed_size == "Large" and user_commitment == "low":
                base_score *= 0.80
            elif breed_size == "Giant" and user_commitment == "low":
                base_score *= 0.70

            return base_score

        # 4. 經驗等級計算
        def calculate_experience_score(care_level, user_experience, temperament):
            base_scores = {
                "High": {"beginner": 0.3, "intermediate": 0.7, "advanced": 1.0},
                "Moderate": {"beginner": 0.6, "intermediate": 0.9, "advanced": 1.0},
                "Low": {"beginner": 0.9, "intermediate": 1.0, "advanced": 1.0}
            }

            score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]

            temperament_lower = temperament.lower()
            if user_experience == "beginner":
                if any(trait in temperament_lower for trait in ['stubborn', 'independent', 'intelligent']):
                    score *= 0.80
                if any(trait in temperament_lower for trait in ['easy', 'gentle', 'friendly']):
                    score *= 1.15

            return min(1.0, score)

        def calculate_health_score(breed_name: str) -> float:
            if breed_name not in breed_health_info:
                return 0.5

            health_notes = breed_health_info[breed_name]['health_notes'].lower()

            # 嚴重健康問題
            severe_conditions = [
                'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
                'bloat', 'progressive', 'syndrome'
            ]

            # 中等健康問題
            moderate_conditions = [
                'allergies', 'infections', 'thyroid', 'luxation',
                'skin problems', 'ear'
            ]

            severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
            moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)

            health_score = 1.0
            health_score -= (severe_count * 0.1)
            health_score -= (moderate_count * 0.05)

            # 特殊條件調整
            if user_prefs.has_children:
                if 'requires frequent' in health_notes or 'regular monitoring' in health_notes:
                    health_score *= 0.9

            if user_prefs.experience_level == 'beginner':
                if 'requires frequent' in health_notes or 'requires experienced' in health_notes:
                    health_score *= 0.8

            return max(0.3, min(1.0, health_score))

        def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float:
            if breed_name not in breed_noise_info:
                return 0.5

            noise_info = breed_noise_info[breed_name]
            noise_level = noise_info['noise_level'].lower()


            # 基礎噪音分數矩陣
            noise_matrix = {
                'low': {'low': 1.0, 'medium': 0.8, 'high': 0.6},
                'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.8},
                'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0}
            }

            # 從噪音矩陣獲取基礎分數
            base_score = noise_matrix.get(noise_level, {'low': 0.7, 'medium': 0.7, 'high': 0.7})[user_noise_tolerance]

            # 特殊情況調整
            special_adjustments = 0
            if user_prefs.has_children and noise_level == 'high':
                special_adjustments -= 0.1
            if user_prefs.living_space == 'apartment':
                if noise_level == 'high':
                    special_adjustments -= 0.15
                elif noise_level == 'medium':
                    special_adjustments -= 0.05

            final_score = base_score + special_adjustments
            return max(0.3, min(1.0, final_score))

        # 計算所有基礎分數
        scores = {
            'space': calculate_space_score(breed_info['Size'], user_prefs.living_space, user_prefs.space_for_play),
            'exercise': calculate_exercise_score(breed_info.get('Exercise Needs', 'Moderate'), user_prefs.exercise_time),
            'grooming': calculate_grooming_score(breed_info.get('Grooming Needs', 'Moderate'), user_prefs.grooming_commitment.lower(), breed_info['Size']),
            'experience': calculate_experience_score(breed_info.get('Care Level', 'Moderate'), user_prefs.experience_level, breed_info.get('Temperament', '')),
            'health': calculate_health_score(breed_info.get('Breed', '')),
            'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
        }

        # 更新權重配置
        weights = {
            'space': 0.20,
            'exercise': 0.20,
            'grooming': 0.15,
            'experience': 0.15,
            'health': 0.15,
            'noise': 0.15
        }

        # 基礎分數計算
        base_score = sum(score * weights[category]
                        for category, score in scores.items()
                        if category != 'overall')

        # 額外調整
        adjustments = 0

        # 1. 適應性加分
        if breed_info.get('Adaptability', 'Medium') == 'High':
            adjustments += 0.02

        # 2. 氣候相容性
        if user_prefs.climate in breed_info.get('Suitable Climate', '').split(','):
            adjustments += 0.02

        # 3. 其他寵物相容性
        if user_prefs.other_pets and breed_info.get('Good with Other Pets') == 'Yes':
            adjustments += 0.02

        final_score = min(1.0, max(0, base_score + adjustments))
        scores['overall'] = round(final_score, 4)

        # 四捨五入所有分數
        for key in scores:
            scores[key] = round(scores[key], 4)

        return scores

    except Exception as e:
        print(f"Error in calculate_compatibility_score: {str(e)}")
        return {k: 0.5 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}