File size: 12,314 Bytes
d269960
 
 
 
027f03b
d269960
 
516c6e6
d269960
027f03b
d269960
 
 
 
 
 
 
 
bd3da99
 
 
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd7249
c98bb3f
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd3da99
d269960
 
 
 
 
 
c98bb3f
 
 
 
3bd7249
 
 
 
d269960
 
 
 
 
 
 
 
 
 
bd3da99
d269960
c98bb3f
3bd7249
d269960
 
 
c98bb3f
 
 
3bd7249
d269960
b89c5d7
 
d269960
 
 
b89c5d7
 
d269960
 
 
 
 
 
 
 
 
 
 
 
bd3da99
c98bb3f
 
 
 
 
8e6b5cf
 
 
 
 
 
c005a67
c98bb3f
 
 
 
b89c5d7
 
 
 
 
 
8e6b5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89c5d7
c98bb3f
8e6b5cf
 
c98bb3f
 
 
 
 
8e6b5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c98bb3f
 
 
 
 
8e6b5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027f03b
516c6e6
027f03b
 
516c6e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027f03b
 
516c6e6
 
 
 
 
 
 
 
 
 
027f03b
 
 
 
516c6e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027f03b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import pandas as pd
import plotly.express as px
import streamlit as st

from process_kpi.process_gsm_capacity import analyze_gsm_data
from utils.convert_to_excel import (  # Import convert_dfs from the appropriate module
    convert_gsm_dfs,
    save_dataframe,
)
from utils.kpi_analysis_utils import GsmCapacity

st.title(" 📊 GSM Capacity Analysis")
doc_col, image_col = st.columns(2)

with doc_col:
    st.write(
        """
        The report should be run with a minimum of 3 days of data.
        - Dump file required
        - Daily Cell level KPI report in CSV format
        - BH Cell level KPI report in CSV format
        """
    )

with image_col:
    st.image("./assets/gsm_capacity.png", width=250)

file1, file2, file3 = st.columns(3)

with file1:
    uploaded_dump = st.file_uploader("Upload Dump file in xlsb format", type="xlsb")
with file2:
    uploaded_daily_report = st.file_uploader(
        "Upload Daily Report in CSV format", type="csv"
    )
with file3:
    uploaded_bh_report = st.file_uploader(
        "Upload Busy Hour Report in CSV format", type="csv"
    )


col1, col2 = st.columns(2)

threshold_col1, threshold_col2 = st.columns(2)
threshold_col3, threshold_col4 = st.columns(2)
max_traffic_threshold_col1, operational_neighbours_distance_col1 = st.columns(2)


if (
    uploaded_dump is not None
    and uploaded_daily_report is not None
    and uploaded_bh_report is not None
):
    # WbtsCapacity.final_results = None
    with col1:
        number_of_kpi_days = st.number_input(
            "Number of days for analysis",
            min_value=3,
            max_value=30,
            value=7,
        )
    with col2:
        number_of_threshold_days = st.number_input(
            "Number of days for threshold",
            min_value=1,
            max_value=30,
            value=3,
        )

    with threshold_col1:
        availability_threshold = st.number_input(
            "Availability Threshold", min_value=1, max_value=100, value=95
        )
    with threshold_col2:
        tch_abis_fails_threshold = st.number_input(
            "TCH ABIS Fails Threshold", min_value=0, value=10
        )
    with threshold_col3:
        sdcch_blocking_threshold = st.number_input(
            "SDDCH Blocking Threshold", min_value=0.1, value=0.5
        )
    with threshold_col4:
        tch_blocking_threshold = st.number_input(
            "TCH Blocking Threshold", min_value=0.1, value=0.5
        )
    with max_traffic_threshold_col1:
        max_traffic_threshold = st.number_input(
            "TCH Utilization Max Traffic Threshold", min_value=0, value=90
        )
    with operational_neighbours_distance_col1:
        operational_neighbours_distance = st.number_input(
            "Operational Neighbours Distance", min_value=0, value=1
        )

    if st.button("Analyze Data", type="primary"):
        dfs = analyze_gsm_data(
            dump_path=uploaded_dump,
            daily_report_path=uploaded_daily_report,
            bh_report_path=uploaded_bh_report,
            number_of_kpi_days=number_of_kpi_days,
            number_of_threshold_days=number_of_threshold_days,
            availability_threshold=availability_threshold,
            tch_abis_fails_threshold=tch_abis_fails_threshold,
            sdcch_blocking_threshold=sdcch_blocking_threshold,
            tch_blocking_threshold=tch_blocking_threshold,
            max_traffic_threshold=max_traffic_threshold,
            operational_neighbours_distance=operational_neighbours_distance,
        )

        if dfs is not None:
            gsm_analysis_df: pd.DataFrame = dfs[0]
            bh_kpi_df: pd.DataFrame = dfs[1]
            daily_kpi_df: pd.DataFrame = dfs[2]
            distance_df: pd.DataFrame = dfs[3]
            GsmCapacity.final_results = convert_gsm_dfs(
                [gsm_analysis_df, distance_df, bh_kpi_df, daily_kpi_df],
                ["GSM_Analysis", "Distance", "BH_KPI_Analysis", "Daily_KPI_Analysis"],
            )

            # GsmCapacity.final_results = convert_gsm_dfs(
            #     [gsm_analysis_df, bh_kpi_df, daily_kpi_df],
            #     ["GSM_Analysis", "BH_KPI_Analysis", "Daily_KPI_Analysis"],
            # )

            if GsmCapacity.final_results is not None:
                st.download_button(
                    on_click="ignore",
                    type="primary",
                    label="Download the Analysis Report",
                    data=GsmCapacity.final_results,
                    file_name="GSM_Analysis_Report.xlsx",
                    mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
                )

        st.write(daily_kpi_df)

        # Add dataframe and ploty bar chart with "Final comment" distribution in gsm_analysis_df in 2 columns
        final_comments_df = (
            gsm_analysis_df.groupby("Final comment").size().reset_index(name="count")
        )
        fig = px.bar(
            final_comments_df,
            x="Final comment",
            y="count",
            title="Final comment distribution",
        )
        fig.update_layout(height=1000)
        fig.update_traces(texttemplate="%{value}", textposition="outside")
        st.plotly_chart(fig, use_container_width=True)
        st.write(final_comments_df)

        # Add dataframe and ploty bar chart with "Final comment summary" distribution in gsm_analysis_df in 2 columns
        final_comments_summary_df = (
            gsm_analysis_df.groupby("Final comment summary")
            .size()
            .reset_index(name="count")
        )
        # Add Pie chart with "Final comment summary" distribution in gsm_analysis_df in 2 columns
        st.markdown("***")
        st.markdown(":blue[**Final comment summary distribution**]")
        final_comments_summary_col1, final_comments_summary_col2 = st.columns((1, 3))
        with final_comments_summary_col1:
            st.write(final_comments_summary_df)
        with final_comments_summary_col2:
            fig = px.pie(
                final_comments_summary_df,
                names="Final comment summary",
                values="count",
                hover_name="Final comment summary",
                hover_data=["count"],
                title="GSM Analysis comment distribution",
            )
            fig.update_layout(height=800)
            fig.update_traces(
                texttemplate="%{label}: %{value}",
                textfont_size=15,
                textposition="outside",
            )
            st.plotly_chart(fig, use_container_width=True)

        # Add dataframe and ploty bar chart with "BH Congestion status" distribution in gsm_analysis_df in 2 columns
        st.markdown("***")
        st.markdown(":blue[**BH Congestion status distribution**]")
        bh_congestion_status_df = (
            gsm_analysis_df.groupby("BH Congestion status")
            .size()
            .reset_index(name="count")
        )
        # Replace "" cell in "BH Congestion status" with "No Congestion"
        bh_congestion_status_df["BH Congestion status"] = bh_congestion_status_df[
            "BH Congestion status"
        ].replace("", "No Congestion")
        # Replace "nan, nan" cell in "BH Congestion status" with "No KPI"
        bh_congestion_status_df["BH Congestion status"] = bh_congestion_status_df[
            "BH Congestion status"
        ].replace("nan, nan", "No KPI")

        bh_congestion_status_col1, bh_congestion_status_col2 = st.columns((2, 1))
        with bh_congestion_status_col2:
            st.write(bh_congestion_status_df)
        with bh_congestion_status_col1:
            fig = px.pie(
                bh_congestion_status_df,
                names="BH Congestion status",
                values="count",
                hover_name="BH Congestion status",
                hover_data=["count"],
                title="BH Congestion status distribution",
            )
            fig.update_layout(height=800)
            fig.update_traces(
                texttemplate="%{label}: %{value}",
                textfont_size=15,
                textposition="outside",
            )
            st.plotly_chart(fig, use_container_width=True)

        # Add dataframe and ploty pie chart with "operational_comment" distribution in gsm_analysis_df in 2 columns
        st.markdown("***")
        st.markdown(":blue[**Operational comments distribution**]")
        operational_comments_df = (
            gsm_analysis_df.groupby("operational_comment")
            .size()
            .reset_index(name="count")
        )
        operational_comments_col1, operational_comments_col2 = st.columns((1, 2))
        with operational_comments_col1:
            st.write(operational_comments_df)
        with operational_comments_col2:
            fig = px.pie(
                operational_comments_df,
                names="operational_comment",
                values="count",
                hover_name="operational_comment",
                hover_data=["count"],
                title="Operational comments distribution",
            )
            fig.update_layout(height=600)
            fig.update_traces(
                texttemplate="%{label}: %{value}",
                textfont_size=15,
                textposition="outside",
            )
            st.plotly_chart(fig, use_container_width=True)

        # create a map plot with scatter_map with gsm_analysis_df and max_tch_call_blocking_bh
        st.markdown("***")
        st.markdown(":blue[**Max TCH Call Blocking BH distribution**]")

        # Select and clean the necessary columns
        map_df = gsm_analysis_df[
            ["code", "max_tch_call_blocking_bh", "Latitude", "Longitude"]
        ].dropna(subset=["code", "max_tch_call_blocking_bh", "Latitude", "Longitude"])

        # Group by code and max max_tch_call_blocking_bh, keep first occurrence of other columns
        map_df = (
            map_df.groupby("code")
            .agg(
                {
                    "max_tch_call_blocking_bh": "max",
                    "Latitude": "first",
                    "Longitude": "first",
                }
            )
            .reset_index()
        )
        # save_dataframe(map_df, "max_tch_call_blocking_bh_map")
        # Create a color column based on the threshold
        map_df["color"] = map_df["max_tch_call_blocking_bh"].apply(
            lambda x: (
                "Above Threshold" if x > tch_blocking_threshold else "Below Threshold"
            )
        )

        # Apply minimum size to make small values more visible
        min_bubble_size = 5  # Minimum size for visibility
        max_bubble_size = 30  # Maximum size for scaling

        # Scale the size to make small values more visible while maintaining relative sizes
        size_scale = max_bubble_size / map_df["max_tch_call_blocking_bh"].max()
        map_df["scaled_size"] = map_df["max_tch_call_blocking_bh"].apply(
            lambda x: max(x * size_scale, min_bubble_size)
        )

        fig = px.scatter_map(
            map_df,
            lat="Latitude",
            lon="Longitude",
            color="color",
            color_discrete_map={"Above Threshold": "red", "Below Threshold": "green"},
            size="scaled_size",
            size_max=max_bubble_size,
            hover_data={
                "code": True,  # Show code in hover data
                "max_tch_call_blocking_bh": ":.2f",
                "scaled_size": False,
            },
            hover_name="code",  # This will show as the title of the hover box
            zoom=10,
            height=600,
            title="Max TCH Call Blocking BH distribution",
        )

        # Update traces to show code on bubbles and customize hover
        fig.update_traces(
            text=map_df["code"],  # Show code on the bubble
            textposition="middle center",
            textfont=dict(size=18, color="black"),
            # hovertemplate="<b>%{hovertext}</b><br>"
            # + "Blocking: %{customdata[1]:.2f}%<extra></extra>",
        )

        # Adjust layout for better text visibility
        fig.update_layout(
            mapbox_style="open-street-map",
            showlegend=True,
            margin=dict(l=10, r=10, t=40, b=10),
        )

        st.plotly_chart(fig, use_container_width=True)