Spaces:
Runtime error
Runtime error
File size: 15,055 Bytes
d4226c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
from itertools import product
import json
import math
import os
import random
import typing as tp
import pytest
import torch
from torch.utils.data import DataLoader
from audiocraft.data.audio_dataset import (
AudioDataset,
AudioMeta,
_get_audio_meta,
load_audio_meta,
save_audio_meta
)
from audiocraft.data.zip import PathInZip
from ..common_utils import TempDirMixin, get_white_noise, save_wav
class TestAudioMeta(TempDirMixin):
def test_get_audio_meta(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(duration * sample_rate)
wav = get_white_noise(ch, n_frames)
path = self.get_temp_path('sample.wav')
save_wav(path, wav, sample_rate)
m = _get_audio_meta(path, minimal=True)
assert m.path == path, 'path does not match'
assert m.sample_rate == sample_rate, 'sample rate does not match'
assert m.duration == duration, 'duration does not match'
assert m.amplitude is None
assert m.info_path is None
def test_save_audio_meta(self):
audio_meta = [
AudioMeta("mypath1", 1., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file1.json')),
AudioMeta("mypath2", 2., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file2.json'))
]
empty_audio_meta = []
for idx, meta in enumerate([audio_meta, empty_audio_meta]):
path = self.get_temp_path(f'data_{idx}_save.jsonl')
save_audio_meta(path, meta)
with open(path, 'r') as f:
lines = f.readlines()
read_meta = [AudioMeta.from_dict(json.loads(line)) for line in lines]
assert len(read_meta) == len(meta)
for m, read_m in zip(meta, read_meta):
assert m == read_m
def test_load_audio_meta(self):
try:
import dora
except ImportError:
dora = None # type: ignore
audio_meta = [
AudioMeta("mypath1", 1., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file1.json')),
AudioMeta("mypath2", 2., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file2.json'))
]
empty_meta = []
for idx, meta in enumerate([audio_meta, empty_meta]):
path = self.get_temp_path(f'data_{idx}_load.jsonl')
with open(path, 'w') as f:
for m in meta:
json_str = json.dumps(m.to_dict()) + '\n'
f.write(json_str)
read_meta = load_audio_meta(path)
assert len(read_meta) == len(meta)
for m, read_m in zip(meta, read_meta):
if dora:
m.path = dora.git_save.to_absolute_path(m.path)
assert m == read_m, f'original={m}, read={read_m}'
class TestAudioDataset(TempDirMixin):
def _create_audio_files(self,
root_name: str,
num_examples: int,
durations: tp.Union[float, tp.Tuple[float, float]] = (0.1, 1.),
sample_rate: int = 16_000,
channels: int = 1):
root_dir = self.get_temp_dir(root_name)
for i in range(num_examples):
if isinstance(durations, float):
duration = durations
elif isinstance(durations, tuple) and len(durations) == 1:
duration = durations[0]
elif isinstance(durations, tuple) and len(durations) == 2:
duration = random.uniform(durations[0], durations[1])
else:
assert False
n_frames = int(duration * sample_rate)
wav = get_white_noise(channels, n_frames)
path = os.path.join(root_dir, f'example_{i}.wav')
save_wav(path, wav, sample_rate)
return root_dir
def _create_audio_dataset(self,
root_name: str,
total_num_examples: int,
durations: tp.Union[float, tp.Tuple[float, float]] = (0.1, 1.),
sample_rate: int = 16_000,
channels: int = 1,
segment_duration: tp.Optional[float] = None,
num_examples: int = 10,
shuffle: bool = True,
return_info: bool = False):
root_dir = self._create_audio_files(root_name, total_num_examples, durations, sample_rate, channels)
dataset = AudioDataset.from_path(root_dir,
minimal_meta=True,
segment_duration=segment_duration,
num_samples=num_examples,
sample_rate=sample_rate,
channels=channels,
shuffle=shuffle,
return_info=return_info)
return dataset
def test_dataset_full(self):
total_examples = 10
min_duration, max_duration = 1., 4.
sample_rate = 16_000
channels = 1
dataset = self._create_audio_dataset(
'dset', total_examples, durations=(min_duration, max_duration),
sample_rate=sample_rate, channels=channels, segment_duration=None)
assert len(dataset) == total_examples
assert dataset.sample_rate == sample_rate
assert dataset.channels == channels
for idx in range(len(dataset)):
sample = dataset[idx]
assert sample.shape[0] == channels
assert sample.shape[1] <= int(max_duration * sample_rate)
assert sample.shape[1] >= int(min_duration * sample_rate)
def test_dataset_segment(self):
total_examples = 10
num_samples = 20
min_duration, max_duration = 1., 4.
segment_duration = 1.
sample_rate = 16_000
channels = 1
dataset = self._create_audio_dataset(
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate,
channels=channels, segment_duration=segment_duration, num_examples=num_samples)
assert len(dataset) == num_samples
assert dataset.sample_rate == sample_rate
assert dataset.channels == channels
for idx in range(len(dataset)):
sample = dataset[idx]
assert sample.shape[0] == channels
assert sample.shape[1] == int(segment_duration * sample_rate)
def test_dataset_equal_audio_and_segment_durations(self):
total_examples = 1
num_samples = 2
audio_duration = 1.
segment_duration = 1.
sample_rate = 16_000
channels = 1
dataset = self._create_audio_dataset(
'dset', total_examples, durations=audio_duration, sample_rate=sample_rate,
channels=channels, segment_duration=segment_duration, num_examples=num_samples)
assert len(dataset) == num_samples
assert dataset.sample_rate == sample_rate
assert dataset.channels == channels
for idx in range(len(dataset)):
sample = dataset[idx]
assert sample.shape[0] == channels
assert sample.shape[1] == int(segment_duration * sample_rate)
# the random seek_time adds variability on audio read
sample_1 = dataset[0]
sample_2 = dataset[1]
assert not torch.allclose(sample_1, sample_2)
def test_dataset_samples(self):
total_examples = 1
num_samples = 2
audio_duration = 1.
segment_duration = 1.
sample_rate = 16_000
channels = 1
create_dataset = partial(
self._create_audio_dataset,
'dset', total_examples, durations=audio_duration, sample_rate=sample_rate,
channels=channels, segment_duration=segment_duration, num_examples=num_samples,
)
dataset = create_dataset(shuffle=True)
# when shuffle = True, we have different inputs for the same index across epoch
sample_1 = dataset[0]
sample_2 = dataset[0]
assert not torch.allclose(sample_1, sample_2)
dataset_noshuffle = create_dataset(shuffle=False)
# when shuffle = False, we have same inputs for the same index across epoch
sample_1 = dataset_noshuffle[0]
sample_2 = dataset_noshuffle[0]
assert torch.allclose(sample_1, sample_2)
def test_dataset_return_info(self):
total_examples = 10
num_samples = 20
min_duration, max_duration = 1., 4.
segment_duration = 1.
sample_rate = 16_000
channels = 1
dataset = self._create_audio_dataset(
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate,
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True)
assert len(dataset) == num_samples
assert dataset.sample_rate == sample_rate
assert dataset.channels == channels
for idx in range(len(dataset)):
sample, segment_info = dataset[idx]
assert sample.shape[0] == channels
assert sample.shape[1] == int(segment_duration * sample_rate)
assert segment_info.sample_rate == sample_rate
assert segment_info.total_frames == int(segment_duration * sample_rate)
assert segment_info.n_frames <= int(segment_duration * sample_rate)
assert segment_info.seek_time >= 0
def test_dataset_return_info_no_segment_duration(self):
total_examples = 10
num_samples = 20
min_duration, max_duration = 1., 4.
segment_duration = None
sample_rate = 16_000
channels = 1
dataset = self._create_audio_dataset(
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate,
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True)
assert len(dataset) == total_examples
assert dataset.sample_rate == sample_rate
assert dataset.channels == channels
for idx in range(len(dataset)):
sample, segment_info = dataset[idx]
assert sample.shape[0] == channels
assert sample.shape[1] == segment_info.total_frames
assert segment_info.sample_rate == sample_rate
assert segment_info.n_frames <= segment_info.total_frames
def test_dataset_collate_fn(self):
total_examples = 10
num_samples = 20
min_duration, max_duration = 1., 4.
segment_duration = 1.
sample_rate = 16_000
channels = 1
dataset = self._create_audio_dataset(
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate,
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=False)
batch_size = 4
dataloader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=0
)
for idx, batch in enumerate(dataloader):
assert batch.shape[0] == batch_size
@pytest.mark.parametrize("segment_duration", [1.0, None])
def test_dataset_with_meta_collate_fn(self, segment_duration):
total_examples = 10
num_samples = 20
min_duration, max_duration = 1., 4.
segment_duration = 1.
sample_rate = 16_000
channels = 1
dataset = self._create_audio_dataset(
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate,
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True)
batch_size = 4
dataloader = DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collater,
num_workers=0
)
for idx, batch in enumerate(dataloader):
wav, infos = batch
assert wav.shape[0] == batch_size
assert len(infos) == batch_size
@pytest.mark.parametrize("segment_duration,sample_on_weight,sample_on_duration,a_hist,b_hist,c_hist", [
[1, True, True, 0.5, 0.5, 0.0],
[1, False, True, 0.25, 0.5, 0.25],
[1, True, False, 0.666, 0.333, 0.0],
[1, False, False, 0.333, 0.333, 0.333],
[None, False, False, 0.333, 0.333, 0.333]])
def test_sample_with_weight(self, segment_duration, sample_on_weight, sample_on_duration, a_hist, b_hist, c_hist):
random.seed(1234)
rng = torch.Generator()
rng.manual_seed(1234)
def _get_histogram(dataset, repetitions=20_000):
counts = {file_meta.path: 0. for file_meta in meta}
for _ in range(repetitions):
file_meta = dataset.sample_file(rng)
counts[file_meta.path] += 1
return {name: count / repetitions for name, count in counts.items()}
meta = [
AudioMeta(path='a', duration=5, sample_rate=1, weight=2),
AudioMeta(path='b', duration=10, sample_rate=1, weight=None),
AudioMeta(path='c', duration=5, sample_rate=1, weight=0),
]
dataset = AudioDataset(
meta, segment_duration=segment_duration, sample_on_weight=sample_on_weight,
sample_on_duration=sample_on_duration)
hist = _get_histogram(dataset)
assert math.isclose(hist['a'], a_hist, abs_tol=0.01)
assert math.isclose(hist['b'], b_hist, abs_tol=0.01)
assert math.isclose(hist['c'], c_hist, abs_tol=0.01)
def test_meta_duration_filter_all(self):
meta = [
AudioMeta(path='a', duration=5, sample_rate=1, weight=2),
AudioMeta(path='b', duration=10, sample_rate=1, weight=None),
AudioMeta(path='c', duration=5, sample_rate=1, weight=0),
]
try:
AudioDataset(meta, segment_duration=11, min_segment_ratio=1)
assert False
except AssertionError:
assert True
def test_meta_duration_filter_long(self):
meta = [
AudioMeta(path='a', duration=5, sample_rate=1, weight=2),
AudioMeta(path='b', duration=10, sample_rate=1, weight=None),
AudioMeta(path='c', duration=5, sample_rate=1, weight=0),
]
dataset = AudioDataset(meta, segment_duration=None, min_segment_ratio=1, max_audio_duration=7)
assert len(dataset) == 2
|