File size: 2,527 Bytes
f8a1225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from transformers import AutoTokenizer, AutoModel, AutoConfig
import torch
from tqdm import tqdm
import gan_cls_768
from torch.autograd import Variable
from PIL import Image
import matplotlib.pyplot as plt

device = "cuda" if torch.cuda.is_available() else "cpu"


def clean(txt):
    txt = txt.lower()
    txt = txt.strip()
    txt = txt.strip('.')
    return txt


max_len = 76


def tokenize(tokenizer, txt):
    return tokenizer(
        txt,
        max_length=max_len,
        padding='max_length',
        truncation=True,
        return_offsets_mapping=False
    )


def encode(model_name, model, tokenizer, txt):
    txt = clean(txt)
    txt_tokenized = tokenize(tokenizer, txt)

    for k, v in txt_tokenized.items():
        txt_tokenized[k] = torch.tensor(v, dtype=torch.long, device=device)[None]

    model.eval()
    with torch.no_grad():
        encoded = model(**txt_tokenized)

    return encoded.last_hidden_state.squeeze()[0].cpu().numpy()


model_name = 'roberta-base'

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(
    model_name,
    config=AutoConfig.from_pretrained(model_name, output_hidden_states=True)).to(device)



def generate_image(text, n):
    embed = encode(model_name, model, tokenizer, text)

    generator = torch.nn.DataParallel(gan_cls_768.generator().to(device))
    generator.load_state_dict(torch.load("./gen_125.pth", map_location=torch.device('cpu')))
    generator.eval()
    
    embed2 = torch.FloatTensor(embed)
    embed2 = embed2.unsqueeze(0)
    right_embed = Variable(embed2.float()).to(device)
    
    l = []
    for i in tqdm(range(n)):
        noise = Variable(torch.randn(1, 100)).to(device)
        noise = noise.view(noise.size(0), 100, 1, 1)
        fake_images = generator(right_embed, noise)
        
        for idx, image in enumerate(fake_images):
            im = Image.fromarray(image.data.mul_(127.5).add_(127.5).byte().permute(1, 2, 0).cpu().numpy())
            l.append(im)
    return l



if __name__ == '__main__':
    
    
    n = 10 
    imgs = generate_image('Red images', n)
    
    
    fig, ax = plt.subplots(nrows=5, ncols=2)
    ax = ax.flatten()
    
    for idx, ax in enumerate(ax):
        
        ax.imshow(imgs[idx])
        ax.axis('off')
        
    
    fig.tight_layout()
    
    plt.show()
    
    
    
    # while True:
    #     print('Type Caption: ')
    #     txt = input()
    #     print('Generating images...')
    #     generate_image(txt)
    #     print('Completed')