Spaces:
Runtime error
Runtime error
File size: 4,662 Bytes
1d52b89 d0b79fc 1d52b89 2b30723 1d52b89 d0b79fc 38bc0ad 1d52b89 38bc0ad 1d52b89 38bc0ad 1d52b89 8f4648b 1d52b89 38bc0ad 5f96d12 1d52b89 d0b79fc 1d52b89 d0b79fc 1d52b89 d0b79fc 1d52b89 31468a8 1d52b89 d0b79fc 1d52b89 1116695 1d52b89 1116695 d0b79fc 1d52b89 d0b79fc 1d52b89 38bc0ad 1d52b89 66fc472 da203a4 38bc0ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import chainlit as cl
from openai import OpenAI
from langsmith.run_helpers import traceable
from langsmith_config import setup_langsmith_config
import base64
import os
import uuid
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
model = "gpt-3.5-turbo-1106"
model_vision = "gpt-4-vision-preview"
setup_langsmith_config()
# generate UUID for the user from python
user_id = str(uuid.uuid4())
def process_images(msg: cl.Message):
# Processing images exclusively
images = [file for file in msg.elements if "image" in file.mime]
# Accessing the bytes of a specific image
image_bytes = images[0].content # take the first image just for demo purposes
print(len(image_bytes))
# check the size of the image, max 1mb
if len(image_bytes) > 1000000:
return "too_large"
# we need base64 encoded image
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
return image_base64
async def process_stream(stream, msg: cl.Message):
for part in stream:
if token := part.choices[0].delta.content or "":
await msg.stream_token(token)
def handle_vision_call(msg, image_history):
image_base64 = None
image_base64 = process_images(msg)
if image_base64 == "too_large":
return "too_large"
if image_base64:
# add the image to the image history
image_history.append(
{
"role": "user",
"content": [
{"type": "text", "text": msg.content},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
},
],
}
)
stream = gpt_vision_call(image_history)
# clear the image history
image_history.clear()
return stream
@traceable(run_type="llm", name="gpt 3 turbo call", metadata={"user": user_id})
async def gpt_call(message_history: list = []):
client = OpenAI()
stream = client.chat.completions.create(
model=model,
messages=message_history,
stream=True,
user=user_id,
)
return stream
@traceable(run_type="llm", name="gpt 4 turbo vision call", metadata={"user": user_id})
def gpt_vision_call(image_history: list = []):
client = OpenAI()
stream = client.chat.completions.create(
model=model_vision,
messages=image_history,
max_tokens=1000,
stream=True,
user=user_id,
)
return stream
@cl.on_chat_start
def start_chat():
cl.user_session.set(
"message_history",
[{"role": "system", "content": "You are a helpful assistant. You are made by GPT-3.5-turbo-1106, the latest version developed by Openai. You do not have the ability to receive images, but if the user uploads an image with the message, GPT-4-vision-preview will be used. So if a user asks you if you have the ability to analyze images, you can tell them that. And tell him that at the bottom left (above the text input) he has a button to upload images, or he can drag it to the chat, or he can just copy paste the input"}],
)
cl.user_session.set("image_history", [{"role": "system", "content": "You are a helpful assistant. You are developed with GPT-4-vision-preview, if the user uploads an image, you have the ability to understand it. For normal messages GPT-3.5-turbo-1106 will be used, and for images you will use it. If the user asks about your capabilities you can tell them that."}])
@cl.on_message
@traceable(run_type="chain", name="message", metadata={"user": user_id})
async def on_message(msg: cl.Message):
message_history = cl.user_session.get("message_history")
image_history = cl.user_session.get("image_history")
stream_msg = cl.Message(content="")
stream = None
if msg.elements:
stream = handle_vision_call(msg, image_history)
if stream == "too_large":
return await cl.Message(content="Image too large, max 1mb").send()
else:
# add the message in both to keep the coherence between the two histories
message_history.append({"role": "user", "content": msg.content})
image_history.append({"role": "user", "content": msg.content})
stream = await gpt_call(message_history)
if stream:
await process_stream(stream, msg=stream_msg)
message_history.append({"role": "system", "content": stream_msg.content})
image_history.append({"role": "system", "content": stream_msg.content})
return stream_msg.content
|