File size: 6,556 Bytes
138996e
e368b32
 
138996e
b27ddf3
138996e
 
 
 
e368b32
 
138996e
e368b32
138996e
e368b32
55b7ba9
e368b32
 
 
 
 
 
 
 
 
 
 
138996e
 
e368b32
 
 
 
 
138996e
 
 
 
55b7ba9
 
138996e
 
 
 
01f1fbb
138996e
 
 
 
 
 
 
 
e368b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138996e
b27ddf3
138996e
 
 
b27ddf3
55b7ba9
 
 
 
 
 
e368b32
 
 
bea9e81
e368b32
 
 
 
 
 
bea9e81
e368b32
 
 
bea9e81
e368b32
 
 
 
 
 
 
 
 
 
 
 
 
 
bea9e81
e368b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b7ba9
 
e368b32
55b7ba9
e368b32
 
 
 
 
 
 
 
 
 
 
 
55b7ba9
 
 
e368b32
 
 
55b7ba9
 
 
138996e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import json
import os
import shutil

import gradio as gr
from dingo.exec import Executor
from dingo.io import InputArgs


def dingo_demo(dataset_source, input_path, uploaded_file, data_format, column_content, rule_list, prompt_list, model,
               key, api_url):
    if not data_format:
        return 'ValueError: data_format can not be empty, please input.', None
    if not column_content:
        return 'ValueError: column_content can not be empty, please input.', None
    if not rule_list and not prompt_list:
        return 'ValueError: rule_list and prompt_list can not be empty at the same time.', None

    # Handle input path based on dataset source
    if dataset_source == "hugging_face":
        if not input_path:
            return 'ValueError: input_path can not be empty for hugging_face dataset, please input.', None
        final_input_path = input_path
    else:  # local
        if not uploaded_file:
            return 'ValueError: Please upload a file for local dataset.', None
        final_input_path = uploaded_file.name

    input_data = {
        "dataset": dataset_source,
        "input_path": final_input_path,
        "output_path": "" if dataset_source == 'hugging_face' else os.path.dirname(final_input_path),
        "save_data": True,
        "save_raw": True,
        "data_format": data_format,
        "column_content": column_content,
        "custom_config":
            {
                "rule_list": rule_list,
                "prompt_list": prompt_list,
                "llm_config":
                    {
                        "detect_text_quality_detail":
                            {
                                "model": model,
                                "key": key,
                                "api_url": api_url,
                            }
                    }
            }
    }
    input_args = InputArgs(**input_data)
    executor = Executor.exec_map["local"](input_args)
    executor.execute()
    summary = executor.get_summary().to_dict()
    detail = executor.get_bad_info_list()
    new_detail = []
    for item in detail:
        new_detail.append(item.to_raw_dict())
    if summary['output_path']:
        shutil.rmtree(summary['output_path'])

    # 返回两个值:概要信息和详细信息
    return json.dumps(summary, indent=4), new_detail


def update_input_components(dataset_source):
    # 根据数据源的不同,返回不同的输入组件
    if dataset_source == "hugging_face":
        # 如果数据源是huggingface,返回一个可见的文本框和一个不可见的文件组件
        return [
            gr.Textbox(visible=True),
            gr.File(visible=False),
        ]
    else:  # local
        # 如果数据源是本地,返回一个不可见的文本框和一个可见的文件组件
        return [
            gr.Textbox(visible=False),
            gr.File(visible=True),
        ]


if __name__ == '__main__':
    rule_options = ['RuleAbnormalChar', 'RuleAbnormalHtml', 'RuleContentNull', 'RuleContentShort', 'RuleEnterAndSpace', 'RuleOnlyUrl']
    prompt_options = ['PromptRepeat', 'PromptContentChaos']

    with open("header.html", "r") as file:
        header = file.read()
    with gr.Blocks() as demo:
        gr.HTML(header)
        with gr.Row():
            with gr.Column():
                with gr.Column():
                    dataset_source = gr.Dropdown(
                        choices=["hugging_face", "local"],
                        value="hugging_face",
                        label="dataset [source]"
                    )
                    input_path = gr.Textbox(
                        value='chupei/format-jsonl',
                        placeholder="please input hugging_face dataset path",
                        label="input_path",
                        visible=True
                    )
                    uploaded_file = gr.File(
                        label="upload file",
                        visible=False
                    )

                    data_format = gr.Dropdown(
                        ["jsonl", "json", "plaintext", "listjson"],
                        label="data_format"
                    )
                    column_content = gr.Textbox(
                        value="content",
                        placeholder="please input column name of content in dataset",
                        label="column_content"
                    )

                    rule_list = gr.CheckboxGroup(
                        choices=rule_options,
                        value=['RuleAbnormalChar', 'RuleAbnormalHtml'],
                        label="rule_list"
                    )
                    prompt_list = gr.CheckboxGroup(
                        choices=prompt_options,
                        label="prompt_list"
                    )
                    model = gr.Textbox(
                        placeholder="If want to use llm, please input model, such as: deepseek-chat",
                        label="model"
                    )
                    key = gr.Textbox(
                        placeholder="If want to use llm, please input key, such as: 123456789012345678901234567890xx",
                        label="API KEY"
                    )
                    api_url = gr.Textbox(
                        placeholder="If want to use llm, please input api_url, such as: https://api.deepseek.com/v1",
                        label="API URL"
                    )

                with gr.Row():
                    submit_single = gr.Button(value="Submit", interactive=True, variant="primary")

            with gr.Column():
                # 修改输出组件部分,使用Tabs
                with gr.Tabs():
                    with gr.Tab("Result Summary"):
                        summary_output = gr.Textbox(label="summary", max_lines=50)
                    with gr.Tab("Result Detail"):
                        detail_output = gr.JSON(label="detail", max_height=800)  # 使用JSON组件来更好地展示结构化数据

        dataset_source.change(
            fn=update_input_components,
            inputs=dataset_source,
            outputs=[input_path, uploaded_file]
        )

        submit_single.click(
            fn=dingo_demo,
            inputs=[dataset_source, input_path, uploaded_file, data_format, column_content, rule_list, prompt_list,
                    model, key, api_url],
            outputs=[summary_output, detail_output]  # 修改输出为两个组件
        )

    # 启动界面
    demo.launch()