Spaces:
No application file
No application file
File size: 10,652 Bytes
3ff8aa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from __future__ import annotations
import numpy as np
import pandas as pd
import streamlit as st
from sklearn.metrics import (
accuracy_score,
classification_report,
confusion_matrix,
f1_score,
precision_score,
recall_score,
)
# External plotting libs
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
# Ag-Grid for the data-explorer
from st_aggrid import AgGrid, GridOptionsBuilder
###############################################################################
# ------------------------------ APP HELPERS --------------------------------
###############################################################################
def _load_data(uploaded_file: st.runtime.uploaded_file_manager.UploadedFile | None) -> pd.DataFrame | None:
"""Load XLSX or CSV into a DataFrame, or return *None* if not uploaded."""
if uploaded_file is None:
return None
file_name = uploaded_file.name.lower()
try:
if file_name.endswith((".xlsx", ".xls")):
return pd.read_excel(uploaded_file)
if file_name.endswith(".csv"):
return pd.read_csv(uploaded_file)
except Exception as exc: # pragma: no-cover
st.error(f"Could not read the uploaded file β {exc}")
return None
st.error("Unsupported file type. Please upload .xlsx or .csv.")
return None
def _compute_metrics(
df: pd.DataFrame,
y_true_col: str,
y_pred_col: str,
):
"""Return global metrics, class report & confusion matrix."""
y_true = df[y_true_col].astype(str).fillna("<NA>")
y_pred = df[y_pred_col].astype(str).fillna("<NA>")
acc = accuracy_score(y_true, y_pred)
prec = precision_score(y_true, y_pred, average="weighted", zero_division=0)
rec = recall_score(y_true, y_pred, average="weighted", zero_division=0)
f1 = f1_score(y_true, y_pred, average="macro", zero_division=0)
cls_report = classification_report(
y_true, y_pred, output_dict=True, zero_division=0
)
labels = sorted(y_true.unique().tolist())
conf_mat = confusion_matrix(y_true, y_pred, labels=labels)
return acc, prec, rec, f1, cls_report, conf_mat, labels
def _plot_confusion(conf_mat: np.ndarray, labels: list[str]):
"""Return a seaborn heat-map figure with readable tick labels."""
# Dynamic sizing β wider for x-labels, taller for y-labels
fig_w = max(8, 0.4 * len(labels)) # width grows slowly
fig_h = max(6, 0.35 * len(labels)) # height a bit shorter
fig, ax = plt.subplots(figsize=(fig_w, fig_h))
sns.heatmap(
conf_mat,
annot=True,
fmt="d",
cmap="Blues",
xticklabels=labels,
yticklabels=labels,
ax=ax,
cbar_kws={"shrink": 0.85},
)
# Rotate & style tick labels for readability
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right", fontsize=8)
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
ax.set_xlabel("Predicted Label")
ax.set_ylabel("True Label")
ax.set_title("Confusion Matrix")
fig.tight_layout()
return fig
###############################################################################
# --------------------------------- MAIN -----------------------------------
###############################################################################
def main() -> None:
st.set_page_config(
page_title="ML Prediction Dashboard",
layout="wide",
page_icon="π",
initial_sidebar_state="expanded",
)
st.title("π Machine-Learning Prediction Dashboard")
st.write(
"Upload a predictions file and instantly explore model performance, "
"confidence behaviour and individual mis-classifications."
)
# ------------------------------------------------------------------
# Sidebar β file upload & column mapping
# ------------------------------------------------------------------
with st.sidebar:
st.header("1οΈβ£ Upload & Mapping")
uploaded_file = st.file_uploader(
"Upload .xlsx or .csv containing predictions", type=["xlsx", "xls", "csv"]
)
st.divider()
st.header("2οΈβ£ Column Mapping")
y_true_col = st.text_input("Ground-truth column", value="ground_truth")
y_pred_col = st.text_input("Predicted-label column", value="CASISTICA_MOTIVAZIONE")
prob_col = st.text_input(
"Probability / confidence column", value="PROBABILITA_ASSOCIAZIONE"
)
df = _load_data(uploaded_file)
if df is None:
st.info("π Upload a file to start β¦")
st.stop()
# ------------------------------------------------------------------
# KPI Metrics
# ------------------------------------------------------------------
acc, prec, rec, f1, cls_report, conf_mat, labels = _compute_metrics(
df, y_true_col, y_pred_col
)
kpi_cols = st.columns(6)
kpi_cols[0].metric("Accuracy", f"{acc:.2%}")
kpi_cols[1].metric("Weighted Precision", f"{prec:.2%}")
kpi_cols[2].metric("Weighted Recall", f"{rec:.2%}")
kpi_cols[3].metric("Macro-F1", f"{f1:.2%}")
kpi_cols[4].metric("# Records", f"{len(df):,}")
kpi_cols[5].metric("# Classes", f"{df[y_true_col].nunique()}")
st.divider()
# ------------------------------------------------------------------
# Confidence distribution + threshold sweeper
# ------------------------------------------------------------------
st.subheader("Confidence Distribution")
if prob_col in df.columns:
fig_hist = px.histogram(
df,
x=prob_col,
nbins=40,
marginal="box",
title="Model confidence histogram",
labels={prob_col: "Confidence"},
height=350,
)
st.plotly_chart(fig_hist, use_container_width=True)
st.markdown("#### Threshold Sweeper")
thresh = st.slider("Probability threshold", 0.0, 1.0, 0.5, 0.01)
df_tmp = df.copy()
df_tmp["_adjusted_pred"] = np.where(
df_tmp[prob_col] >= thresh, df_tmp[y_pred_col].astype(str), "UNASSIGNED"
)
acc2, prec2, rec2, f12, *_ = _compute_metrics(df_tmp, y_true_col, "_adjusted_pred")
st.info(
f"**Metrics @ β₯ {thresh:.2f}** β "
f"Accuracy {acc2:.2%} β’ Precision {prec2:.2%} β’ "
f"Recall {rec2:.2%} β’ Macro-F1 {f12:.2%}"
)
else:
st.warning("Selected probability column does not exist β skipping confidence plots.")
st.divider()
# ------------------------------------------------------------------
# Confusion matrix & class-wise report
# ------------------------------------------------------------------
st.subheader("Confusion Matrix")
fig_cm = _plot_confusion(conf_mat, labels)
st.pyplot(fig_cm, use_container_width=True)
st.subheader("Class-wise Metrics")
cls_df = (
pd.DataFrame(cls_report)
.T.reset_index()
.rename(columns={"index": "class"})
)
st.dataframe(cls_df, use_container_width=True)
st.divider()
# ------------------------------------------------------------------
# Data Explorer (AG-Grid) β with text wrapping & interactive reordering
# ------------------------------------------------------------------
st.subheader("Data Explorer")
# Filters
with st.expander("Filters", expanded=False):
sel_true = st.multiselect(
"Ground-truth labels β", sorted(df[y_true_col].unique()),
default=sorted(df[y_true_col].unique()),
)
sel_pred = st.multiselect(
"Predicted labels β", sorted(df[y_pred_col].unique()),
default=sorted(df[y_pred_col].unique()),
)
if prob_col in df.columns:
prob_rng = st.slider(
"Confidence range β", 0.0, 1.0, (0.0, 1.0), 0.01, key="prob_range"
)
else:
prob_rng = (0.0, 1.0)
# Apply filters
df_view = df[
df[y_true_col].isin(sel_true)
& df[y_pred_col].isin(sel_pred)
& (
(df[prob_col] >= prob_rng[0]) & (df[prob_col] <= prob_rng[1])
if prob_col in df.columns
else True
)
].copy()
st.caption(f"Showing **{len(df_view):,}** rows after filtering.")
# Build AgGrid table with wrapping & movable columns
gb = GridOptionsBuilder.from_dataframe(df_view)
gb.configure_default_column(
editable=False,
filter=True,
sortable=True,
resizable=True,
wrapText=True,
autoHeight=True,
movable=True, # allow drag-and-drop
)
# Optional: give extra width to your free-text column
if "NOTE_OPERATORE" in df_view.columns:
gb.configure_column(
"NOTE_OPERATORE",
width=300,
minWidth=100,
maxWidth=600,
wrapText=True,
autoHeight=True,
)
gb.configure_selection("single", use_checkbox=True)
grid_opts = gb.build()
grid_opts["suppressMovableColumns"] = False
AgGrid(
df_view,
gridOptions=grid_opts,
enable_enterprise_modules=True,
height=400,
width="100%",
allow_unsafe_jscode=True,
update_mode="SELECTION_CHANGED",
)
# Selected-row details as before...
grid_resp = st.session_state.get("grid_response", None)
sel = grid_resp["selected_rows"] if grid_resp else []
if sel:
row = sel[0]
st.markdown("### Row Details")
with st.expander(f"Document #: {row.get('NUMERO_DOCUMENTO','N/A')}", expanded=True):
st.write("**Ground-truth:**", row.get(y_true_col))
st.write("**Predicted:**", row.get(y_pred_col))
if prob_col in row:
st.write("**Confidence:**", row.get(prob_col))
st.write("**Operator Notes:**")
st.write(row.get("NOTE_OPERATORE", "β"))
match_cols = [c for c in df.columns if c.startswith("MATCH") and not c.endswith("VALUE")]
if match_cols:
st.write("**Top Suggestions & Similarity**")
sim_df = pd.DataFrame(
{
"Suggestion": [row.get(c) for c in match_cols],
"Similarity": [
row.get(f"{c}_VALUE") if f"{c}_VALUE" in row else np.nan
for c in match_cols
],
}
)
st.table(sim_df)
if __name__ == "__main__":
main()
|