File size: 10,652 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#include "rope.hpp"

struct rope_corr_dims {
    float v[2];
};

static float rope_yarn_ramp(const float low, const float high, const int i0) {
    const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
    return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
}

// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
    float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
    float * cos_theta, float * sin_theta) {
    // Get n-d rotational scaling corrected for extrapolation
    float theta_interp = freq_scale * theta_extrap;
    float theta = theta_interp;
    if (ext_factor != 0.0f) {
        float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;

        // Get n-d magnitude scaling corrected for interpolation
        mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
    }
    *cos_theta = sycl::cos(theta) * mscale;
    *sin_theta = sycl::sin(theta) * mscale;
}

template<typename T, bool has_ff>
static void rope_norm(
    const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
    const sycl::nd_item<3> &item_ct1) {
    const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
                         item_ct1.get_local_id(1));

    if (i0 >= ne0) {
        return;
    }

    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
                    item_ct1.get_local_id(2);

    if (i0 >= n_dims) {
        const int i = row*ne0 + i0;

        dst[i + 0] = x[i + 0];
        dst[i + 1] = x[i + 1];

        return;
    }

    const int i = row*ne0 + i0;
    const int i2 = row/p_delta_rows;

    const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);

    const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;

    float cos_theta;
    float sin_theta;

    rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);

    const float x0 = x[i + 0];
    const float x1 = x[i + 1];

    dst[i + 0] = x0*cos_theta - x1*sin_theta;
    dst[i + 1] = x0*sin_theta + x1*cos_theta;
}

template<typename T, bool has_ff>
static void rope_neox(
    const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
    const sycl::nd_item<3> &item_ct1) {
    const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
                         item_ct1.get_local_id(1));

    if (i0 >= ne0) {
        return;
    }

    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
                    item_ct1.get_local_id(2);

    if (i0 >= n_dims) {
        const int i = row*ne0 + i0;

        dst[i + 0] = x[i + 0];
        dst[i + 1] = x[i + 1];

        return;
    }

    const int i  = row*ne0 + i0/2;
    const int i2 = row/p_delta_rows;

    const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);

    const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;

    float cos_theta;
    float sin_theta;

    rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);

    const float x0 = x[i + 0];
    const float x1 = x[i + n_dims/2];

    dst[i + 0]        = x0*cos_theta - x1*sin_theta;
    dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
}

template <typename T>
static void rope_norm_sycl(
    const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
    GGML_ASSERT(ne0 % 2 == 0);
    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
    const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
    const sycl::range<3> block_nums(1, num_blocks_x, nr);

    const float theta_scale = powf(freq_base, -2.0f/n_dims);

    dpct::has_capability_or_fail(stream->get_device(),
                                     {sycl::aspect::fp16});

    if (freq_factors == nullptr) {
        /*
        DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */
        stream->parallel_for(
            sycl::nd_range<3>(block_nums * block_dims, block_dims),
            [=](sycl::nd_item<3> item_ct1) {
                rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
                               ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
                               item_ct1);
            });
    } else {
        /*
        DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */
        stream->parallel_for(
            sycl::nd_range<3>(block_nums * block_dims, block_dims),
            [=](sycl::nd_item<3> item_ct1) {
                rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
                              ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
                              item_ct1);
            });
    }
}

template <typename T>
static void rope_neox_sycl(
    const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
    GGML_ASSERT(ne0 % 2 == 0);
    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
    const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
    const sycl::range<3> block_nums(1, num_blocks_x, nr);

    const float theta_scale = powf(freq_base, -2.0f/n_dims);

    dpct::has_capability_or_fail(stream->get_device(),
                                    {sycl::aspect::fp16});

    if (freq_factors == nullptr) {
        stream->parallel_for(
            sycl::nd_range<3>(block_nums * block_dims, block_dims),
            [=](sycl::nd_item<3> item_ct1) {
                rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
                                    p_delta_rows, ext_factor, attn_factor,
                                    corr_dims, theta_scale, freq_factors,
                                    item_ct1);
            });
    } else {
        stream->parallel_for(
            sycl::nd_range<3>(block_nums * block_dims, block_dims),
            [=](sycl::nd_item<3> item_ct1) {
                rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
                                    p_delta_rows, ext_factor, attn_factor,
                                    corr_dims, theta_scale, freq_factors,
                                    item_ct1);
            });
    }
}

void ggml_sycl_op_rope(
    ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
    const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
    const ggml_tensor * src2 = dst->src[2];

    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
    GGML_ASSERT(src0->type == dst->type);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t nr = ggml_nrows(src0);

    //const int n_past      = ((int32_t *) dst->op_params)[0];
    const int n_dims      = ((int32_t *) dst->op_params)[1];
    const int mode        = ((int32_t *) dst->op_params)[2];
    //const int n_ctx       = ((int32_t *) dst->op_params)[3];
    const int n_ctx_orig  = ((int32_t *) dst->op_params)[4];

    // RoPE alteration for extended context
    float freq_base;
    float freq_scale;
    float ext_factor;
    float attn_factor;
    float beta_fast;
    float beta_slow;

    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));

    const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;

    const int32_t * pos = (const int32_t *) src1_dd;

    const float * freq_factors = nullptr;
    if (src2 != nullptr) {
        freq_factors = (const float *) src2->data;
    }

    rope_corr_dims corr_dims;
    ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);

    // compute
    if (is_neox) {
        if (src0->type == GGML_TYPE_F32) {
            rope_neox_sycl(
                (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
                attn_factor, corr_dims, freq_factors, main_stream
            );
        } else if (src0->type == GGML_TYPE_F16) {
            rope_neox_sycl(
                (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
                attn_factor, corr_dims, freq_factors, main_stream
            );
        } else {
            GGML_ABORT("fatal error");
        }
    } else {
        if (src0->type == GGML_TYPE_F32) {
            rope_norm_sycl(
                (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
                attn_factor, corr_dims, freq_factors, main_stream
            );
        } else if (src0->type == GGML_TYPE_F16) {
            rope_norm_sycl(
                (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
                attn_factor, corr_dims, freq_factors, main_stream
            );
        } else {
            GGML_ABORT("fatal error");
        }
    }

    (void) src1;
    (void) dst;
    (void) src1_dd;
}