File size: 123,280 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//

//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//

#ifndef GGML_SYCL_DPCT_HELPER_HPP
#define GGML_SYCL_DPCT_HELPER_HPP

#include <sycl/sycl.hpp>
#include <sycl/half_type.hpp>
#include <oneapi/mkl.hpp>
#include <map>

#include "ggml.h"

#if defined(__linux__)
#include <sys/mman.h>
#elif defined(_WIN64)
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#else
#error "Only support Windows and Linux."
#endif

#if defined(__linux__)
#include <unistd.h>
#include <sys/syscall.h>
#endif
#if defined(_WIN64)
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#endif

#define DPCT_COMPATIBILITY_TEMP (900)

#if defined(_MSC_VER)
#define __dpct_align__(n) __declspec(align(n))
#define __dpct_inline__ __forceinline
#else
#define __dpct_align__(n) __attribute__((aligned(n)))
#define __dpct_inline__ __inline__ __attribute__((always_inline))
#endif

#if defined(_MSC_VER)
#define __dpct_noinline__ __declspec(noinline)
#else
#define __dpct_noinline__ __attribute__((noinline))
#endif

inline std::string get_device_type_name(const sycl::device &Device) {
    auto DeviceType = Device.get_info<sycl::info::device::device_type>();
    switch (DeviceType) {
    case sycl::info::device_type::cpu:
        return "cpu";
    case sycl::info::device_type::gpu:
        return "gpu";
    case sycl::info::device_type::host:
        return "host";
    case sycl::info::device_type::accelerator:
        return "acc";
    default:
        return "unknown";
    }
}

inline std::string get_device_backend_and_type(const sycl::device &device) {
    std::stringstream device_type;
    sycl::backend backend = device.get_backend();
    device_type <<  backend << ":" << get_device_type_name(device);
    return device_type.str();
}

namespace dpct
{
    typedef sycl::queue *queue_ptr;
    typedef sycl::event *event_ptr;
    typedef char *device_ptr;
    typedef uint8_t byte_t;
    typedef sycl::buffer<byte_t> buffer_t;

    /// SYCL default exception handler
    inline auto exception_handler = [](sycl::exception_list exceptions)
    {
        for (std::exception_ptr const &e : exceptions)
        {
            try
            {
                std::rethrow_exception(e);
            }
            catch (sycl::exception const &e)
            {
                std::cerr << "Caught asynchronous SYCL exception:" << std::endl
                          << e.what() << std::endl
                          << "Exception caught at file:" << __FILE__
                          << ", line:" << __LINE__ << std::endl;
            }
        }
    };

    enum error_code
    {
        success = 0,
        default_error = 999
    };

    enum memcpy_direction
    {
        host_to_host,
        host_to_device,
        device_to_host,
        device_to_device,
        automatic
    };

    enum memory_region
    {
        global = 0, // device global memory
        constant,   // device constant memory
        local,      // device local memory
        shared,     // memory which can be accessed by host and device
    };

    enum class library_data_t : unsigned char
    {
        real_float = 0,
        complex_float,
        real_double,
        complex_double,
        real_half,
        complex_half,
        real_bfloat16,
        complex_bfloat16,
        real_int4,
        complex_int4,
        real_uint4,
        complex_uint4,
        real_int8,
        complex_int8,
        real_uint8,
        complex_uint8,
        real_int16,
        complex_int16,
        real_uint16,
        complex_uint16,
        real_int32,
        complex_int32,
        real_uint32,
        complex_uint32,
        real_int64,
        complex_int64,
        real_uint64,
        complex_uint64,
        real_int8_4,
        real_int8_32,
        real_uint8_4,
        library_data_t_size
    };

    template <typename T>
    struct DataType
    {
        using T2 = T;
    };
    template <typename T>
    struct DataType<sycl::vec<T, 2>>
    {
        using T2 = std::complex<T>;
    };

    static void destroy_event(event_ptr event)
    {
        delete event;
    }

    static inline unsigned int get_tid()
    {
#if defined(__linux__)
        return syscall(SYS_gettid);
#elif defined(_WIN64)
        return GetCurrentThreadId();
#else
#error "Only support Windows and Linux."
#endif
    }

    namespace detail
    {
        static void get_version(const sycl::device &dev, int &major, int &minor)
        {
            // Version string has the following format:
            // a. OpenCL<space><major.minor><space><vendor-specific-information>
            // b. <major.minor>
            // c. <AmdGcnArchName> e.g gfx1030
            std::string ver;
            ver = dev.get_info<sycl::info::device::version>();
            std::string::size_type i = 0;
            while (i < ver.size()) {
              if (isdigit(ver[i]))
                break;
              i++;
            }
            major = std::stoi(&(ver[i]));
            while (i < ver.size()) {
              if (ver[i] == '.')
                break;
              i++;
            }
            if (i < ver.size()) {
              // a. and b.
              i++;
              minor = std::stoi(&(ver[i]));
            } else {
              // c.
              minor = 0;
            }
        }

        template <typename tag, typename T>
        class generic_error_type
        {
        public:
            generic_error_type() = default;
            generic_error_type(T value) : value{value} {}
            operator T() const { return value; }

        private:
            T value;
        };

    } // namespace detail

    /// Pitched 2D/3D memory data.
    class pitched_data
    {
    public:
        pitched_data() : pitched_data(nullptr, 0, 0, 0) {}
        pitched_data(void *data, size_t pitch, size_t x, size_t y)
            : _data(data), _pitch(pitch), _x(x), _y(y) {}

        void *get_data_ptr() { return _data; }
        void set_data_ptr(void *data) { _data = data; }

        size_t get_pitch() { return _pitch; }
        void set_pitch(size_t pitch) { _pitch = pitch; }

        size_t get_x() { return _x; }
        void set_x(size_t x) { _x = x; }

        size_t get_y() { return _y; }
        void set_y(size_t y) { _y = y; }

    private:
        void *_data;
        size_t _pitch, _x, _y;
    };

    class device_info
    {
    public:
        // get interface
        const char *get_name() const { return _name; }
        char *get_name() { return _name; }
        template <typename WorkItemSizesTy = sycl::range<3>,
                  std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
                                       std::is_same_v<WorkItemSizesTy, int *>,
                                   int> = 0>
        auto get_max_work_item_sizes() const
        {
            if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
                return sycl::range<3>(_max_work_item_sizes_i[0],
                                      _max_work_item_sizes_i[1],
                                      _max_work_item_sizes_i[2]);
            else
            {
                return _max_work_item_sizes_i;
            }
        }
        template <typename WorkItemSizesTy = sycl::range<3>,
                  std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
                                       std::is_same_v<WorkItemSizesTy, int *>,
                                   int> = 0>
        auto get_max_work_item_sizes()
        {
            if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
                return sycl::range<3>(_max_work_item_sizes_i[0],
                                      _max_work_item_sizes_i[1],
                                      _max_work_item_sizes_i[2]);
            else
            {
                return _max_work_item_sizes_i;
            }
        }
        bool get_host_unified_memory() const { return _host_unified_memory; }
        int get_major_version() const { return _major; }
        int get_minor_version() const { return _minor; }
        int get_integrated() const { return _integrated; }
        int get_max_clock_frequency() const { return _frequency; }
        int get_max_compute_units() const { return _max_compute_units; }
        int get_max_work_group_size() const { return _max_work_group_size; }
        int get_max_sub_group_size() const { return _max_sub_group_size; }
        int get_max_work_items_per_compute_unit() const
        {
            return _max_work_items_per_compute_unit;
        }
        int get_max_register_size_per_work_group() const
        {
            return _max_register_size_per_work_group;
        }
        template <typename NDRangeSizeTy = size_t *,
                  std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
                                       std::is_same_v<NDRangeSizeTy, int *>,
                                   int> = 0>
        auto get_max_nd_range_size() const
        {
            if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
                return _max_nd_range_size;
            else
                return _max_nd_range_size_i;
        }
        template <typename NDRangeSizeTy = size_t *,
                  std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
                                       std::is_same_v<NDRangeSizeTy, int *>,
                                   int> = 0>
        auto get_max_nd_range_size()
        {
            if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
                return _max_nd_range_size;
            else
                return _max_nd_range_size_i;
        }
        size_t get_global_mem_size() const { return _global_mem_size; }
        size_t get_local_mem_size() const { return _local_mem_size; }
        size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
        /// Returns the maximum clock rate of device's global memory in kHz. If
        /// compiler does not support this API then returns default value 3200000 kHz.
        unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
        /// Returns the maximum bus width between device and memory in bits. If
        /// compiler does not support this API then returns default value 64 bits.
        unsigned int get_memory_bus_width() const { return _memory_bus_width; }
        uint32_t get_device_id() const { return _device_id; }
        std::array<unsigned char, 16> get_uuid() const { return _uuid; }
        /// Returns global memory cache size in bytes.
        unsigned int get_global_mem_cache_size() const
        {
            return _global_mem_cache_size;
        }

        // set interface
        void set_name(const char *name)
        {
            size_t length = strlen(name);
            if (length < 256)
            {
                std::memcpy(_name, name, length + 1);
            }
            else
            {
                std::memcpy(_name, name, 255);
                _name[255] = '\0';
            }
        }
        void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes)
        {
            for (int i = 0; i < 3; ++i)
                _max_work_item_sizes_i[i] = max_work_item_sizes[i];
        }
        [[deprecated]] void
        set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes)
        {
            for (int i = 0; i < 3; ++i)
            {
                _max_work_item_sizes_i[i] = max_work_item_sizes[i];
            }
        }
        void set_host_unified_memory(bool host_unified_memory)
        {
            _host_unified_memory = host_unified_memory;
        }
        void set_major_version(int major) { _major = major; }
        void set_minor_version(int minor) { _minor = minor; }
        void set_integrated(int integrated) { _integrated = integrated; }
        void set_max_clock_frequency(int frequency) { _frequency = frequency; }
        void set_max_compute_units(int max_compute_units)
        {
            _max_compute_units = max_compute_units;
        }
        void set_global_mem_size(size_t global_mem_size)
        {
            _global_mem_size = global_mem_size;
        }
        void set_local_mem_size(size_t local_mem_size)
        {
            _local_mem_size = local_mem_size;
        }
        void set_max_mem_alloc_size(size_t max_mem_alloc_size)
        {
            _max_mem_alloc_size = max_mem_alloc_size;
        }
        void set_max_work_group_size(int max_work_group_size)
        {
            _max_work_group_size = max_work_group_size;
        }
        void set_max_sub_group_size(int max_sub_group_size)
        {
            _max_sub_group_size = max_sub_group_size;
        }
        void
        set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit)
        {
            _max_work_items_per_compute_unit = max_work_items_per_compute_unit;
        }
        void set_max_nd_range_size(int max_nd_range_size[])
        {
            for (int i = 0; i < 3; i++)
            {
                _max_nd_range_size[i] = max_nd_range_size[i];
                _max_nd_range_size_i[i] = max_nd_range_size[i];
            }
        }
        void set_memory_clock_rate(unsigned int memory_clock_rate)
        {
            _memory_clock_rate = memory_clock_rate;
        }
        void set_memory_bus_width(unsigned int memory_bus_width)
        {
            _memory_bus_width = memory_bus_width;
        }
        void
        set_max_register_size_per_work_group(int max_register_size_per_work_group)
        {
            _max_register_size_per_work_group = max_register_size_per_work_group;
        }
        void set_device_id(uint32_t device_id)
        {
            _device_id = device_id;
        }
        void set_uuid(std::array<unsigned char, 16> uuid)
        {
            _uuid = std::move(uuid);
        }
        void set_global_mem_cache_size(unsigned int global_mem_cache_size)
        {
            _global_mem_cache_size = global_mem_cache_size;
        }

    private:
        char _name[256];
        int _max_work_item_sizes_i[3];
        bool _host_unified_memory = false;
        int _major;
        int _minor;
        int _integrated = 0;
        int _frequency;
        // Set estimated value 3200000 kHz as default value.
        unsigned int _memory_clock_rate = 3200000;
        // Set estimated value 64 bits as default value.
        unsigned int _memory_bus_width = 64;
        unsigned int _global_mem_cache_size;
        int _max_compute_units;
        int _max_work_group_size;
        int _max_sub_group_size;
        int _max_work_items_per_compute_unit;
        int _max_register_size_per_work_group;
        size_t _global_mem_size;
        size_t _local_mem_size;
        size_t _max_mem_alloc_size;
        size_t _max_nd_range_size[3];
        int _max_nd_range_size_i[3];
        uint32_t _device_id;
        std::array<unsigned char, 16> _uuid;
    };

    static int get_major_version(const sycl::device &dev)
    {
        int major, minor;
        detail::get_version(dev, major, minor);
        return major;
    }

    static int get_minor_version(const sycl::device &dev)
    {
        int major, minor;
        detail::get_version(dev, major, minor);
        return minor;
    }

    static void get_device_info(device_info &out, const sycl::device &dev)
    {
        device_info prop;
        prop.set_name(dev.get_info<sycl::info::device::name>().c_str());

        int major, minor;
        detail::get_version(dev, major, minor);
        prop.set_major_version(major);
        prop.set_minor_version(minor);

        prop.set_max_work_item_sizes(
#if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
            // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes
            // is an enum class element
            dev.get_info<sycl::info::device::max_work_item_sizes>());
#else
            // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by
            // an int
            dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
#endif
        prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));

        prop.set_max_clock_frequency(
            dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);

        prop.set_max_compute_units(
            dev.get_info<sycl::info::device::max_compute_units>());
        prop.set_max_work_group_size(
            dev.get_info<sycl::info::device::max_work_group_size>());
        prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
        prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
        prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());

#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
        if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
        {
            unsigned int tmp =
                dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
            if (tmp != 0)
                prop.set_memory_clock_rate(1000 * tmp);
        }
        if (dev.has(sycl::aspect::ext_intel_memory_bus_width))
        {
            prop.set_memory_bus_width(
                dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
        }
        if (dev.has(sycl::aspect::ext_intel_device_id))
        {
            prop.set_device_id(
                dev.get_info<sycl::ext::intel::info::device::device_id>());
        }
        if (dev.has(sycl::aspect::ext_intel_device_info_uuid))
        {
            prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
        }
#elif defined(_MSC_VER) && !defined(__clang__)
#pragma message("get_device_info: querying memory_clock_rate and \
        memory_bus_width are not supported by the compiler used. \
        Use 3200000 kHz as memory_clock_rate default value. \
        Use 64 bits as memory_bus_width default value.")
#else
#warning "get_device_info: querying memory_clock_rate and \
        memory_bus_width are not supported by the compiler used. \
        Use 3200000 kHz as memory_clock_rate default value. \
        Use 64 bits as memory_bus_width default value."
#endif

        size_t max_sub_group_size = 1;
        std::vector<size_t> sub_group_sizes =
            dev.get_info<sycl::info::device::sub_group_sizes>();

        for (const auto &sub_group_size : sub_group_sizes)
        {
            if (max_sub_group_size < sub_group_size)
                max_sub_group_size = sub_group_size;
        }

        prop.set_max_sub_group_size(max_sub_group_size);

        prop.set_max_work_items_per_compute_unit(
            dev.get_info<sycl::info::device::max_work_group_size>());
        int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
        prop.set_max_nd_range_size(max_nd_range_size);

        // Estimates max register size per work group, feel free to update the value
        // according to device properties.
        prop.set_max_register_size_per_work_group(65536);

        prop.set_global_mem_cache_size(
            dev.get_info<sycl::info::device::global_mem_cache_size>());
        out = prop;
    }

    /// dpct device extension
    class device_ext : public sycl::device {
      typedef std::mutex mutex_type;

     public:
      device_ext() : sycl::device() {}
      ~device_ext() {
        std::lock_guard<mutex_type> lock(m_mutex);
        clear_queues();
      }
      device_ext(const sycl::device &base) : sycl::device(base) {
        std::lock_guard<mutex_type> lock(m_mutex);
        init_queues();
      }

      int is_native_atomic_supported() { return 0; }
      int get_major_version() const { return dpct::get_major_version(*this); }

      int get_minor_version() const { return dpct::get_minor_version(*this); }

      int get_max_compute_units() const {
        return get_device_info().get_max_compute_units();
      }

      /// Return the maximum clock frequency of this device in KHz.
      int get_max_clock_frequency() const {
        return get_device_info().get_max_clock_frequency();
      }

      int get_integrated() const { return get_device_info().get_integrated(); }

      int get_max_sub_group_size() const {
        return get_device_info().get_max_sub_group_size();
      }

      int get_max_register_size_per_work_group() const {
        return get_device_info().get_max_register_size_per_work_group();
      }

      int get_max_work_group_size() const {
        return get_device_info().get_max_work_group_size();
      }

      int get_mem_base_addr_align() const {
        return get_info<sycl::info::device::mem_base_addr_align>();
      }

      size_t get_global_mem_size() const {
        return get_device_info().get_global_mem_size();
      }

      size_t get_max_mem_alloc_size() const {
        return get_device_info().get_max_mem_alloc_size();
      }

      /// Get the number of bytes of free and total memory on the SYCL device.
      /// \param [out] free_memory The number of bytes of free memory on the
      /// SYCL device. \param [out] total_memory The number of bytes of total
      /// memory on the SYCL device.
      void get_memory_info(size_t &free_memory, size_t &total_memory) {
        total_memory = get_device_info().get_global_mem_size();
        const char *warning_info =
            "get_memory_info: [warning] ext_intel_free_memory is not "
            "supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
            "use total memory as free memory";
#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
        if (!has(sycl::aspect::ext_intel_free_memory)) {
          std::cerr << warning_info << std::endl;
          free_memory = total_memory;
        } else {
          free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
        }
#else
        std::cerr << warning_info << std::endl;
        free_memory = total_memory;
#if defined(_MSC_VER) && !defined(__clang__)
#pragma message("Querying the number of bytes of free memory is not supported")
#else
#warning "Querying the number of bytes of free memory is not supported"
#endif
#endif
      }

      void get_device_info(device_info &out) const {
        dpct::get_device_info(out, *this);
      }

      device_info get_device_info() const {
        device_info prop;
        dpct::get_device_info(prop, *this);
        return prop;
      }

      void reset() {
        std::lock_guard<mutex_type> lock(m_mutex);
        clear_queues();
        init_queues();
      }

      sycl::queue &in_order_queue() { return _q_in_order; }

      sycl::queue &out_of_order_queue() { return _q_out_of_order; }

      sycl::queue &default_queue() { return in_order_queue(); }

      void queues_wait_and_throw() {
        std::unique_lock<mutex_type> lock(m_mutex);
        lock.unlock();
        for (auto &q : _queues) {
            q.wait_and_throw();
        }
        // Guard the destruct of current_queues to make sure the ref count is
        // safe.
        lock.lock();
      }

      sycl::queue create_queue(bool enable_exception_handler = false) {
        return create_in_order_queue(enable_exception_handler);
      }

      sycl::queue create_queue(sycl::device device,
                               bool enable_exception_handler = false) {
        return create_in_order_queue(device, enable_exception_handler);
      }

      sycl::queue create_in_order_queue(bool enable_exception_handler = false) {
        std::lock_guard<mutex_type> lock(m_mutex);
        return create_queue_impl(enable_exception_handler,
                                 sycl::property::queue::in_order());
      }

      sycl::queue create_in_order_queue(sycl::device device,
                                        bool enable_exception_handler = false) {
        std::lock_guard<mutex_type> lock(m_mutex);
        return create_queue_impl(device, enable_exception_handler,
                                 sycl::property::queue::in_order());
      }

      sycl::queue create_out_of_order_queue(
          bool enable_exception_handler = false) {
        std::lock_guard<mutex_type> lock(m_mutex);
        return create_queue_impl(enable_exception_handler);
      }

      void destroy_queue(sycl::queue queue) {
        std::lock_guard<mutex_type> lock(m_mutex);
        _queues.erase(std::remove_if(_queues.begin(), _queues.end(),
                                    [=](const sycl::queue &q) -> bool
                                    {
                                        return q == queue;
                                    }),
                    _queues.end());
      }
      void set_saved_queue(sycl::queue q) {
        std::lock_guard<mutex_type> lock(m_mutex);
        _saved_queue = q;
      }
      sycl::queue get_saved_queue() const {
        std::lock_guard<mutex_type> lock(m_mutex);
        return _saved_queue;
      }

     private:
      void clear_queues() { _queues.clear(); }

      void init_queues() {
        _q_in_order =
            create_queue_impl(true, sycl::property::queue::in_order());
        _q_out_of_order = create_queue_impl(true);
        _saved_queue = default_queue();
      }

      /// Caller should acquire resource \p m_mutex before calling this
      /// function.
      template <class... Properties>
      sycl::queue create_queue_impl(bool enable_exception_handler,
                                    Properties... properties) {
        sycl::async_handler eh = {};
        if (enable_exception_handler) {
          eh = exception_handler;
        }
        _queues.push_back(sycl::queue(
            *this, eh,
            sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
                sycl::property::queue::enable_profiling(),
#endif
                properties...)));

        return _queues.back();
      }

      template <class... Properties>
      sycl::queue create_queue_impl(sycl::device device,
                                    bool enable_exception_handler,
                                    Properties... properties) {
        sycl::async_handler eh = {};
        if (enable_exception_handler) {
          eh = exception_handler;
        }
        _queues.push_back(sycl::queue(
            device, eh,
                        sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
                            sycl::property::queue::enable_profiling(),
#endif
                            properties...)));

        return _queues.back();
      }

      void get_version(int &major, int &minor) const {
        detail::get_version(*this, major, minor);
      }
      sycl::queue _q_in_order, _q_out_of_order;
      sycl::queue _saved_queue;
      std::vector<sycl::queue> _queues;
      mutable mutex_type m_mutex;
    };


    /// device manager
    class dev_mgr
    {
    public:
        device_ext &current_device()
        {
            unsigned int dev_id = current_device_id();
            check_id(dev_id);
            return *_devs[dev_id];
        }
        device_ext &cpu_device() const
        {
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
            if (_cpu_device == -1)
            {
                throw std::runtime_error("no valid cpu device");
            }
            else
            {
                return *_devs[_cpu_device];
            }
        }
        device_ext &get_device(unsigned int id) const
        {
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
            check_id(id);
            return *_devs[id];
        }
        unsigned int current_device_id() const
        {
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
            auto it = _thread2dev_map.find(get_tid());
            if (it != _thread2dev_map.end())
                return it->second;
            return DEFAULT_DEVICE_ID;
        }

        /// Select device with a device ID.
        /// \param [in] id The id of the device which can
        /// be obtained through get_device_id(const sycl::device).
        void select_device(unsigned int id)
        {
            std::lock_guard<std::recursive_mutex> lock(m_mutex);
            check_id(id);
            _thread2dev_map[get_tid()] = id;
        }
        unsigned int device_count() { return _devs.size(); }

        unsigned int get_device_id(const sycl::device &dev)
        {
            unsigned int id = 0;
            for (auto &dev_item : _devs)
            {
                if (*dev_item == dev)
                {
                    return id;
                }
                id++;
            }
            return -1;
        }

        inline std::string get_preferred_gpu_platform_name() {
            std::string result;

            std::string filter = "";
            char* env = getenv("ONEAPI_DEVICE_SELECTOR");
            if (env) {
                if (std::strstr(env, "level_zero")) {
                    filter = "level-zero";
                }
                else if (std::strstr(env, "opencl")) {
                    filter = "opencl";
                }
                else if (std::strstr(env, "cuda")) {
                    filter = "cuda";
                }
                else if (std::strstr(env, "hip")) {
                    filter = "hip";
                }
                else {
                    throw std::runtime_error("invalid device filter: " + std::string(env));
                }
            } else {
                auto default_device = sycl::device(sycl::default_selector_v);
                auto default_platform_name = default_device.get_platform().get_info<sycl::info::platform::name>();

                if (std::strstr(default_platform_name.c_str(), "Level-Zero") || default_device.is_cpu()) {
                    filter = "level-zero";
                }
                else if (std::strstr(default_platform_name.c_str(), "CUDA")) {
                    filter = "cuda";
                }
                else if (std::strstr(default_platform_name.c_str(), "HIP")) {
                    filter = "hip";
                }
            }

            auto platform_list = sycl::platform::get_platforms();

            for (const auto& platform : platform_list) {
                auto devices = platform.get_devices();
                auto gpu_dev = std::find_if(devices.begin(), devices.end(), [](const sycl::device& d) {
                    return d.is_gpu();
                });

                if (gpu_dev == devices.end()) {
                    // cout << "platform [" << platform_name
                    //      << "] does not contain GPU devices, skipping\n";
                    continue;
                }

                auto platform_name = platform.get_info<sycl::info::platform::name>();
                std::string platform_name_low_case;
                platform_name_low_case.resize(platform_name.size());

                std::transform(
                    platform_name.begin(), platform_name.end(), platform_name_low_case.begin(), ::tolower);

                if (platform_name_low_case.find(filter) == std::string::npos) {
                    // cout << "platform [" << platform_name
                    //      << "] does not match with requested "
                    //      << filter << ", skipping\n";
                    continue;
                }

                result = platform_name;
            }

            if (result.empty())
                throw std::runtime_error("can not find preferred GPU platform");

            return result;
        }

        template <class DeviceSelector>
        std::enable_if_t<
            std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
        select_device(const DeviceSelector &selector = sycl::gpu_selector_v)
        {
            sycl::device selected_device = sycl::device(selector);
            unsigned int selected_device_id = get_device_id(selected_device);
            select_device(selected_device_id);
        }

        /// Returns the instance of device manager singleton.
        static dev_mgr &instance()
        {
            static dev_mgr d_m;
            return d_m;
        }
        dev_mgr(const dev_mgr &) = delete;
        dev_mgr &operator=(const dev_mgr &) = delete;
        dev_mgr(dev_mgr &&) = delete;
        dev_mgr &operator=(dev_mgr &&) = delete;

    private:
        mutable std::recursive_mutex m_mutex;
        static bool compare_dev(sycl::device &device1, sycl::device &device2)
        {
            sycl::backend backend1 = device1.get_backend();
            sycl::backend backend2 = device2.get_backend();
            // levelzero backends always come first
            if(backend1 == sycl::backend::ext_oneapi_level_zero && backend2 != sycl::backend::ext_oneapi_level_zero) return true;
            if(backend1 != sycl::backend::ext_oneapi_level_zero && backend2 == sycl::backend::ext_oneapi_level_zero) return false;
            dpct::device_info prop1;
            dpct::get_device_info(prop1, device1);
            dpct::device_info prop2;
            dpct::get_device_info(prop2, device2);
            return prop1.get_max_compute_units() > prop2.get_max_compute_units();
        }
        static int convert_backend_index(std::string & backend) {
            if (backend == "ext_oneapi_level_zero:gpu") return 0;
            if (backend == "opencl:gpu") return 1;
            if (backend == "ext_oneapi_cuda:gpu") return 2;
            if (backend == "ext_oneapi_hip:gpu") return 3;
            if (backend == "opencl:cpu") return 4;
            if (backend == "opencl:acc") return 5;
            printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
            GGML_ABORT("fatal error");
        }
        static bool compare_backend(std::string &backend1, std::string &backend2) {
            return convert_backend_index(backend1) < convert_backend_index(backend2);
        }
        dev_mgr()
        {
            sycl::device default_device =
                sycl::device(sycl::default_selector_v);
            _devs.push_back(std::make_shared<device_ext>(default_device));

            std::vector<sycl::device> sycl_all_devs;
            // Collect other devices except for the default device.
            if (default_device.is_cpu())
                _cpu_device = 0;

            auto Platforms = sycl::platform::get_platforms();
            // Keep track of the number of devices per backend
            std::map<sycl::backend, size_t> DeviceNums;
            std::map<std::string, std::vector<sycl::device>> backend_devices;
            auto preferred_platform_name = get_preferred_gpu_platform_name();

            while (!Platforms.empty()) {
                auto Platform = Platforms.back();
                Platforms.pop_back();
                auto platform_name = Platform.get_info<sycl::info::platform::name>();
                if (platform_name.compare(preferred_platform_name) != 0) {
                    continue;
                }
                auto devices = Platform.get_devices();
                std::string backend_type = get_device_backend_and_type(devices[0]);
                for (const auto &device : devices) {
                    backend_devices[backend_type].push_back(device);
                }
            }

            std::vector<std::string> keys;
            for(auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
                keys.push_back(it->first);
            }
            std::sort(keys.begin(), keys.end(), compare_backend);

            for (auto &key : keys) {
                std::vector<sycl::device> devs = backend_devices[key];
                std::sort(devs.begin(), devs.end(), compare_dev);
                for (const auto &dev : devs) {
                    sycl_all_devs.push_back(dev);
                }
            }

            for (auto &dev : sycl_all_devs)
            {
                if (dev == default_device)
                {
                    continue;
                }
                _devs.push_back(std::make_shared<device_ext>(dev));
                if (_cpu_device == -1 && dev.is_cpu())
                {
                    _cpu_device = _devs.size() - 1;
                }
            }
        }
        void check_id(unsigned int id) const
        {
            if (id >= _devs.size())
            {
                throw std::runtime_error("invalid device id");
            }
        }
        std::vector<std::shared_ptr<device_ext>> _devs;
        /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
        /// thread id in _thread2dev_map, which means default device should be used
        /// for the current thread.
        const unsigned int DEFAULT_DEVICE_ID = 0;
        /// thread-id to device-id map.
        std::map<unsigned int, unsigned int> _thread2dev_map;
        int _cpu_device = -1;
    };

    static inline sycl::queue &get_default_queue()
    {
        return dev_mgr::instance().current_device().default_queue();
    }

    namespace detail
    {
        enum class pointer_access_attribute
        {
            host_only = 0,
            device_only,
            host_device,
            end
        };

        static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
                                                              const void *ptr)
        {
            switch (sycl::get_pointer_type(ptr, q.get_context()))
            {
            case sycl::usm::alloc::unknown:
                return pointer_access_attribute::host_only;
            case sycl::usm::alloc::device:
                return pointer_access_attribute::device_only;
            case sycl::usm::alloc::shared:
            case sycl::usm::alloc::host:
                return pointer_access_attribute::host_device;
            }
        }

        template <typename ArgT>
        inline constexpr std::uint64_t get_type_combination_id(ArgT Val)
        {
            static_assert((unsigned char)library_data_t::library_data_t_size <=
                              std::numeric_limits<unsigned char>::max() &&
                          "library_data_t size exceeds limit.");
            static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
            return (std::uint64_t)Val;
        }

        template <typename FirstT, typename... RestT>
        inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
                                                               RestT... RestVal)
        {
            static_assert((std::uint8_t)library_data_t::library_data_t_size <=
                              std::numeric_limits<unsigned char>::max() &&
                          "library_data_t size exceeds limit.");
            static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
            static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
            return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
        }

        class mem_mgr
        {
            mem_mgr()
            {
                // Reserved address space, no real memory allocation happens here.
#if defined(__linux__)
                mapped_address_space =
                    (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE,
                                   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
#elif defined(_WIN64)
                mapped_address_space = (byte_t *)VirtualAlloc(
                    NULL,               // NULL specified as the base address parameter
                    mapped_region_size, // Size of allocation
                    MEM_RESERVE,        // Allocate reserved pages
                    PAGE_NOACCESS);     // Protection = no access
#else
#error "Only support Windows and Linux."
#endif
                next_free = mapped_address_space;
            }

        public:
            using buffer_id_t = int;

            struct allocation
            {
                buffer_t buffer;
                byte_t *alloc_ptr;
                size_t size;
            };

            ~mem_mgr()
            {
#if defined(__linux__)
                munmap(mapped_address_space, mapped_region_size);
#elif defined(_WIN64)
                VirtualFree(mapped_address_space, 0, MEM_RELEASE);
#else
#error "Only support Windows and Linux."
#endif
            }

            mem_mgr(const mem_mgr &) = delete;
            mem_mgr &operator=(const mem_mgr &) = delete;
            mem_mgr(mem_mgr &&) = delete;
            mem_mgr &operator=(mem_mgr &&) = delete;

            /// Allocate
            void *mem_alloc(size_t size)
            {
                if (!size)
                    return nullptr;
                std::lock_guard<std::mutex> lock(m_mutex);
                if (next_free + size > mapped_address_space + mapped_region_size)
                {
                    throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool");
                }
                // Allocation
                sycl::range<1> r(size);
                buffer_t buf(r);
                allocation A{buf, next_free, size};
                // Map allocation to device pointer
                void *result = next_free;
                m_map.emplace(next_free + size, A);
                // Update pointer to the next free space.
                next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1);

                return result;
            }

            /// Deallocate
            void mem_free(const void *ptr)
            {
                if (!ptr)
                    return;
                std::lock_guard<std::mutex> lock(m_mutex);
                auto it = get_map_iterator(ptr);
                m_map.erase(it);
            }

            /// map: device pointer -> allocation(buffer, alloc_ptr, size)
            allocation translate_ptr(const void *ptr)
            {
                std::lock_guard<std::mutex> lock(m_mutex);
                auto it = get_map_iterator(ptr);
                return it->second;
            }

            /// Check if the pointer represents device pointer or not.
            bool is_device_ptr(const void *ptr) const
            {
                std::lock_guard<std::mutex> lock(m_mutex);
                return (mapped_address_space <= ptr) &&
                       (ptr < mapped_address_space + mapped_region_size);
            }

            /// Returns the instance of memory manager singleton.
            static mem_mgr &instance()
            {
                static mem_mgr m;
                return m;
            }

        private:
            std::map<byte_t *, allocation> m_map;
            mutable std::mutex m_mutex;
            byte_t *mapped_address_space;
            byte_t *next_free;
            const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024;
            const size_t alignment = 256;
            /// This padding may be defined to some positive value to debug
            /// out of bound accesses.
            const size_t extra_padding = 0;

            std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
            {
                auto it = m_map.upper_bound((byte_t *)ptr);
                if (it == m_map.end())
                {
                    // Not a virtual pointer.
                    throw std::runtime_error("can not get buffer from non-virtual pointer");
                }
                const allocation &alloc = it->second;
                if (ptr < alloc.alloc_ptr)
                {
                    // Out of bound.
                    // This may happen if there's a gap between allocations due to alignment
                    // or extra padding and pointer points to this gap.
                    throw std::runtime_error("invalid virtual pointer");
                }
                return it;
            }
        };

        template <class T, memory_region Memory, size_t Dimension>
        class accessor;
        template <memory_region Memory, class T = byte_t>
        class memory_traits
        {
        public:
            static constexpr sycl::access::target target =
                sycl::access::target::device;
            static constexpr sycl::access_mode mode =
                (Memory == constant) ? sycl::access_mode::read
                                     : sycl::access_mode::read_write;
            static constexpr size_t type_size = sizeof(T);
            using element_t =
                typename std::conditional<Memory == constant, const T, T>::type;
            using value_t = typename std::remove_cv<T>::type;
            template <size_t Dimension = 1>
            using accessor_t = typename std::conditional<
                Memory == local, sycl::local_accessor<value_t, Dimension>,
                sycl::accessor<T, Dimension, mode, target>>::type;
            using pointer_t = T *;
        };

        static inline void *dpct_malloc(size_t size, sycl::queue &q)
        {
            return sycl::malloc_device(size, q.get_device(), q.get_context());
        }

#define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
        static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z,
                                        sycl::queue &q)
        {
            pitch = PITCH_DEFAULT_ALIGN(x);
            return dpct_malloc(pitch * y * z, q);
        }

        /**
         * @brief Sets \p value to the first \p size elements starting from \p dev_ptr in \p q.
         * @tparam valueT The type of the element to be set.
         * @param [in] q The queue in which the operation is done.
         * @param [in] dev_ptr Pointer to the virtual device memory address.
         * @param [in] value The value to be set.
         * @param [in] size Number of elements to be set to the value.
         * @return An event representing the memset operation.
         */
        template <typename valueT>
        static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
                                              valueT value, size_t size)
        {
            return q.fill(dev_ptr, value, size);
        }

        /**
         * @brief Sets \p value to the 3D memory region pointed by \p data in \p q.
         * @tparam valueT The type of the element to be set.
         * @param [in] q The queue in which the operation is done.
         * @param [in] data Pointer to the pitched device memory region.
         * @param [in] value The value to be set.
         * @param [in] size 3D memory region by number of elements.
         * @return An event list representing the memset operations.
         */
        template <typename valueT>
        static inline std::vector<sycl::event>
        dpct_memset(sycl::queue &q, pitched_data data, valueT value,
                    sycl::range<3> size)
        {
            std::vector<sycl::event> event_list;
            size_t slice = data.get_pitch() * data.get_y();
            unsigned char *data_surface = (unsigned char *)data.get_data_ptr();
            for (size_t z = 0; z < size.get(2); ++z)
            {
                unsigned char *data_ptr = data_surface;
                for (size_t y = 0; y < size.get(1); ++y)
                {
                    event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0)));
                    data_ptr += data.get_pitch();
                }
                data_surface += slice;
            }
            return event_list;
        }

        /**
         * @brief Sets \p val to the pitched 2D memory region pointed by \p ptr in \p q.
         * @tparam valueT The type of the element to be set.
         * @param [in] q The queue in which the operation is done.
         * @param [in] ptr Pointer to the virtual device memory.
         * @param [in] pitch The pitch size by number of elements, including padding.
         * @param [in] val The value to be set.
         * @param [in] x The width of memory region by number of elements.
         * @param [in] y The height of memory region by number of elements.
         * @return An event list representing the memset operations.
         */
        template <typename valueT>
        static inline std::vector<sycl::event>
        dpct_memset(sycl::queue &q, void *ptr, size_t pitch, valueT val, size_t x,
                    size_t y)
        {
            return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val,
                               sycl::range<3>(x, y, 1));
        }

        static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr,
                                                        const void *from_ptr,
                                                        memcpy_direction dir)
        {
            switch (dir)
            {
            case memcpy_direction::host_to_host:
            case memcpy_direction::host_to_device:
            case memcpy_direction::device_to_host:
            case memcpy_direction::device_to_device:
                return dir;
            case memcpy_direction::automatic:
            {
                // table[to_attribute][from_attribute]
                static const memcpy_direction
                    direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
                                   [static_cast<unsigned>(pointer_access_attribute::end)] =
                                       {{memcpy_direction::host_to_host,
                                         memcpy_direction::device_to_host,
                                         memcpy_direction::host_to_host},
                                        {memcpy_direction::host_to_device,
                                         memcpy_direction::device_to_device,
                                         memcpy_direction::device_to_device},
                                        {memcpy_direction::host_to_host,
                                         memcpy_direction::device_to_device,
                                         memcpy_direction::device_to_device}};
                return direction_table[static_cast<unsigned>(get_pointer_attribute(
                    q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
            }
            default:
                throw std::runtime_error("dpct_memcpy: invalid direction value");
            }
        }

        static sycl::event
        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
                    memcpy_direction direction,
                    const std::vector<sycl::event> &dep_events = {})
        {
            if (!size)
                return sycl::event{};
            return q.memcpy(to_ptr, from_ptr, size, dep_events);
            GGML_UNUSED(direction);
        }

        // Get actual copy range and make sure it will not exceed range.
        static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
                                            size_t pitch)
        {
            return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
        }

        static inline size_t get_offset(sycl::id<3> id, size_t slice,
                                        size_t pitch)
        {
            return slice * id.get(2) + pitch * id.get(1) + id.get(0);
        }

        /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
        /// and \p from_range to another specified by \p to_ptr and \p to_range.
        static inline std::vector<sycl::event>
        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
                    sycl::range<3> to_range, sycl::range<3> from_range,
                    sycl::id<3> to_id, sycl::id<3> from_id,
                    sycl::range<3> size, memcpy_direction direction,
                    const std::vector<sycl::event> &dep_events = {})
        {
            // RAII for host pointer
            class host_buffer
            {
                void *_buf;
                size_t _size;
                sycl::queue &_q;
                const std::vector<sycl::event> &_deps; // free operation depends

            public:
                host_buffer(size_t size, sycl::queue &q,
                            const std::vector<sycl::event> &deps)
                    : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
                void *get_ptr() const { return _buf; }
                size_t get_size() const { return _size; }
                ~host_buffer()
                {
                    if (_buf)
                    {
                        _q.submit([&](sycl::handler &cgh)
                                  {
        cgh.depends_on(_deps);
        cgh.host_task([buf = _buf] { std::free(buf); }); });
                    }
                }
            };
            std::vector<sycl::event> event_list;

            size_t to_slice = to_range.get(1) * to_range.get(0),
                   from_slice = from_range.get(1) * from_range.get(0);
            unsigned char *to_surface =
                (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
            const unsigned char *from_surface =
                (const unsigned char *)from_ptr +
                get_offset(from_id, from_slice, from_range.get(0));

            if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
            {
                return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
                                    direction, dep_events)};
            }
            direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
            size_t size_slice = size.get(1) * size.get(0);
            switch (direction)
            {
            case host_to_host:
                for (size_t z = 0; z < size.get(2); ++z)
                {
                    unsigned char *to_ptr = to_surface;
                    const unsigned char *from_ptr = from_surface;
                    if (to_range.get(0) == from_range.get(0) &&
                        to_range.get(0) == size.get(0))
                    {
                        event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
                                                         direction, dep_events));
                    }
                    else
                    {
                        for (size_t y = 0; y < size.get(1); ++y)
                        {
                            event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
                                                             direction, dep_events));
                            to_ptr += to_range.get(0);
                            from_ptr += from_range.get(0);
                        }
                    }
                    to_surface += to_slice;
                    from_surface += from_slice;
                }
                break;
            case host_to_device:
            {
                host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
                                event_list);
                std::vector<sycl::event> host_events;
                if (to_slice == size_slice)
                {
                    // Copy host data to a temp host buffer with the shape of target.
                    host_events =
                        dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
                                    sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
                                    host_to_host, dep_events);
                }
                else
                {
                    // Copy host data to a temp host buffer with the shape of target.
                    host_events = dpct_memcpy(
                        q, buf.get_ptr(), from_surface, to_range, from_range,
                        sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
                        // If has padding data, not sure whether it is useless. So fill temp
                        // buffer with it.
                        std::vector<sycl::event>{
                            dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
                                        device_to_host, dep_events)});
                }
                // Copy from temp host buffer to device with only one submit.
                event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
                                                 buf.get_size(), host_to_device,
                                                 host_events));
                break;
            }
            case device_to_host:
            {
                host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
                                event_list);
                // Copy from host temp buffer to host target with reshaping.
                event_list = dpct_memcpy(
                    q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
                    sycl::id<3>(0, 0, 0), size, host_to_host,
                    // Copy from device to temp host buffer with only one submit.
                    std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
                                                         buf.get_size(),
                                                         device_to_host, dep_events)});
                break;
            }
            case device_to_device:
                event_list.push_back(q.submit([&](sycl::handler &cgh){
                cgh.depends_on(dep_events);
                cgh.parallel_for<class dpct_memcpy_3d_detail>(
                    size,
                    [=](sycl::id<3> id) {
                        to_surface[get_offset(id, to_slice, to_range.get(0))] =
                            from_surface[get_offset(id, from_slice, from_range.get(0))];
                    }); }));
                break;
            default:
                throw std::runtime_error("dpct_memcpy: invalid direction value");
            }
            return event_list;
        }

        /// memcpy 2D/3D matrix specified by pitched_data.
        static inline std::vector<sycl::event>
        dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
                    pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
                    memcpy_direction direction = automatic)
        {
            return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
                               sycl::range<3>(to.get_pitch(), to.get_y(), 1),
                               sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
                               size, direction);
        }

        /// memcpy 2D matrix with pitch.
        static inline std::vector<sycl::event>
        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
                    size_t to_pitch, size_t from_pitch, size_t x, size_t y,
                    memcpy_direction direction = automatic)
        {
            return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
                               sycl::range<3>(from_pitch, y, 1),
                               sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
                               sycl::range<3>(x, y, 1), direction);
        }

        namespace deprecated
        {

            template <typename T, sycl::usm::alloc AllocKind>
            class usm_allocator
            {
            private:
                using Alloc = sycl::usm_allocator<T, AllocKind>;
                Alloc _impl;

            public:
                using value_type = typename std::allocator_traits<Alloc>::value_type;
                using pointer = typename std::allocator_traits<Alloc>::pointer;
                using const_pointer = typename std::allocator_traits<Alloc>::const_pointer;
                using void_pointer = typename std::allocator_traits<Alloc>::void_pointer;
                using const_void_pointer =
                    typename std::allocator_traits<Alloc>::const_void_pointer;
                using reference = typename std::allocator_traits<Alloc>::value_type &;
                using const_reference =
                    const typename std::allocator_traits<Alloc>::value_type &;
                using difference_type =
                    typename std::allocator_traits<Alloc>::difference_type;
                using size_type = typename std::allocator_traits<Alloc>::size_type;
                using propagate_on_container_copy_assignment = typename std::allocator_traits<
                    Alloc>::propagate_on_container_copy_assignment;
                using propagate_on_container_move_assignment = typename std::allocator_traits<
                    Alloc>::propagate_on_container_move_assignment;
                using propagate_on_container_swap =
                    typename std::allocator_traits<Alloc>::propagate_on_container_swap;
                using is_always_equal =
                    typename std::allocator_traits<Alloc>::is_always_equal;

                template <typename U>
                struct rebind
                {
                    typedef usm_allocator<U, AllocKind> other;
                };

                usm_allocator() : _impl(dpct::get_default_queue()) {}
                ~usm_allocator() {}
                usm_allocator(const usm_allocator &other) : _impl(other._impl) {}
                usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {}
                pointer address(reference r) { return &r; }
                const_pointer address(const_reference r) { return &r; }
                pointer allocate(size_type cnt, const_void_pointer hint = nullptr)
                {
                    return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint);
                }
                void deallocate(pointer p, size_type cnt)
                {
                    std::allocator_traits<Alloc>::deallocate(_impl, p, cnt);
                }
                size_type max_size() const
                {
                    return std::allocator_traits<Alloc>::max_size(_impl);
                }
                bool operator==(const usm_allocator &other) const { return _impl == other._impl; }
                bool operator!=(const usm_allocator &other) const { return _impl != other._impl; }
            };

        } // namespace deprecated

        inline void dpct_free(void *ptr,
                              const sycl::queue &q)
        {
            if (ptr)
            {
                sycl::free(ptr, q.get_context());
            }
        }

        template <typename T>
        inline auto get_memory(const void *x)
        {
            T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
            return new_x;
        }

        template <typename T>
        inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q)
        {
            using Ty = typename DataType<T>::T2;
            Ty s_h;
            if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
                detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
                    .wait();
            else
                s_h = *reinterpret_cast<const Ty *>(s);
            return s_h;
        }

    } // namespace detail

    template <typename T>
    inline auto get_value(const T *s, sycl::queue &q)
    {
        return detail::get_value(s, q);
    }

    namespace detail
    {
        template <class Ta, class Tb, class Tc, class Ts>
        inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
                              oneapi::mkl::transpose b_trans, int m, int n, int k,
                              const void *alpha, const void *a, int lda, const void *b,
                              int ldb, const void *beta, void *c, int ldc)
        {
            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
            auto data_a = get_memory<const Ta>(a);
            auto data_b = get_memory<const Tb>(b);
            auto data_c = get_memory<Tc>(c);
            oneapi::mkl::blas::column_major::gemm(
                q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
                data_b, ldb, beta_value, data_c, ldc);
        }

        template <typename VecT, class BinaryOperation, class = void>
        class vectorized_binary
        {
        public:
            inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
            {
                VecT v4;
                for (size_t i = 0; i < v4.size(); ++i)
                {
                    v4[i] = binary_op(a[i], b[i]);
                }
                return v4;
            }
        };

        template <typename VecT, class BinaryOperation>
        class vectorized_binary<
            VecT, BinaryOperation,
            std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>>
        {
        public:
            inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
            {
                return binary_op(a, b).template as<VecT>();
            }
        };

        template <class Ta, class Tb, class Tc, class Ts>
        inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
                                    oneapi::mkl::transpose b_trans, int m, int n, int k,
                                    const void *alpha, const void **a, int lda,
                                    const void **b, int ldb, const void *beta, void **c,
                                    int ldc, int batch_size)
        {
            struct matrix_info_t
            {
                oneapi::mkl::transpose transpose_info[2];
                Ts value_info[2];
                std::int64_t size_info[3];
                std::int64_t ld_info[3];
                std::int64_t groupsize_info;
            };

            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);

            matrix_info_t *matrix_info =
                (matrix_info_t *)std::malloc(sizeof(matrix_info_t));
            matrix_info->transpose_info[0] = a_trans;
            matrix_info->transpose_info[1] = b_trans;
            matrix_info->value_info[0] = alpha_value;
            matrix_info->value_info[1] = beta_value;
            matrix_info->size_info[0] = m;
            matrix_info->size_info[1] = n;
            matrix_info->size_info[2] = k;
            matrix_info->ld_info[0] = lda;
            matrix_info->ld_info[1] = ldb;
            matrix_info->ld_info[2] = ldc;
            matrix_info->groupsize_info = batch_size;

            sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
                q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
                matrix_info->size_info, matrix_info->size_info + 1,
                matrix_info->size_info + 2, matrix_info->value_info,
                reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
                reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
                matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
                matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));

            q.submit([&](sycl::handler &cgh)
                     {
    cgh.depends_on(e);
    cgh.host_task([=] { std::free(matrix_info); }); });
        }

        template <class Ta, class Tb, class Tc, class Ts>
        inline void
        gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
                        oneapi::mkl::transpose b_trans, int m, int n,
                        int k, const void *alpha, const void *a, int lda,
                        long long int stride_a, const void *b, int ldb,
                        long long int stride_b, const void *beta, void *c,
                        int ldc, long long int stride_c, int batch_size)
        {
            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
            auto data_a = get_memory<const Ta>(a);
            auto data_b = get_memory<const Tb>(b);
            auto data_c = get_memory<Tc>(c);
            oneapi::mkl::blas::column_major::gemm_batch(
                q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
                stride_a, data_b, ldb, stride_b, beta_value,
                data_c, ldc, stride_c, batch_size);
        }

    } // namespace detail

    template <typename VecT, class BinaryOperation>
    inline unsigned vectorized_binary(unsigned a, unsigned b,
                                      const BinaryOperation binary_op)
    {
        sycl::vec<unsigned, 1> v0{a}, v1{b};
        auto v2 = v0.as<VecT>();
        auto v3 = v1.as<VecT>();
        auto v4 =
            detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
        v0 = v4.template as<sycl::vec<unsigned, 1>>();
        return v0;
    }

    static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size,
                                  memcpy_direction direction = automatic,
                                  sycl::queue &q = dpct::get_default_queue())
    {
        detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction);
    }

    static inline unsigned int select_device(unsigned int id)
    {
        dev_mgr::instance().select_device(id);
        return id;
    }

    template <typename T>
    T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
                               unsigned int logical_sub_group_size = 32)
    {
        unsigned int id = g.get_local_linear_id();
        unsigned int start_index =
            id / logical_sub_group_size * logical_sub_group_size;
        unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
        return sycl::select_from_group(g, x,
                                       target_offset < logical_sub_group_size
                                           ? start_index + target_offset
                                           : id);
    }

    template <typename T>
    sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val)
    {
        return sycl::vec<T, 1>(val)
            .template as<sycl::vec<
                std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
            .template convert<T>();
    }

    template <typename T1, typename T2>
    using dot_product_acc_t =
        std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
                           uint32_t, int32_t>;

    template <typename T1, typename T2, typename T3>
    inline auto dp4a(T1 a, T2 b, T3 c)
    {
        dot_product_acc_t<T1, T2> res = c;
        auto va = extract_and_sign_or_zero_extend4(a);
        auto vb = extract_and_sign_or_zero_extend4(b);
        res += va[0] * vb[0];
        res += va[1] * vb[1];
        res += va[2] * vb[2];
        res += va[3] * vb[3];
        return res;
    }

    struct sub_sat
    {
        template <typename T>
        auto operator()(const T x, const T y) const
        {
            return sycl::sub_sat(x, y);
        }
    };

    template <typename S, typename T>
    inline T vectorized_min(T a, T b)
    {
        sycl::vec<T, 1> v0{a}, v1{b};
        auto v2 = v0.template as<S>();
        auto v3 = v1.template as<S>();
        auto v4 = sycl::min(v2, v3);
        v0 = v4.template as<sycl::vec<T, 1>>();
        return v0;
    }

    inline float pow(const float a, const int b) { return sycl::pown(a, b); }
    inline double pow(const double a, const int b) { return sycl::pown(a, b); }
    inline float pow(const float a, const float b) { return sycl::pow(a, b); }
    inline double pow(const double a, const double b) { return sycl::pow(a, b); }
    template <typename T, typename U>
    inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
    pow(const T a, const U b)
    {
        return sycl::pow(a, static_cast<T>(b));
    }
    template <typename T, typename U>
    inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
    pow(const T a, const U b)
    {
        return sycl::pow(static_cast<double>(a), static_cast<double>(b));
    }

    inline double min(const double a, const float b)
    {
        return sycl::fmin(a, static_cast<double>(b));
    }
    inline double min(const float a, const double b)
    {
        return sycl::fmin(static_cast<double>(a), b);
    }
    inline float min(const float a, const float b) { return sycl::fmin(a, b); }
    inline double min(const double a, const double b) { return sycl::fmin(a, b); }
    inline std::uint32_t min(const std::uint32_t a, const std::int32_t b)
    {
        return sycl::min(a, static_cast<std::uint32_t>(b));
    }
    inline std::uint32_t min(const std::int32_t a, const std::uint32_t b)
    {
        return sycl::min(static_cast<std::uint32_t>(a), b);
    }
    inline std::int32_t min(const std::int32_t a, const std::int32_t b)
    {
        return sycl::min(a, b);
    }
    inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b)
    {
        return sycl::min(a, b);
    }
    inline std::uint64_t min(const std::uint64_t a, const std::int64_t b)
    {
        return sycl::min(a, static_cast<std::uint64_t>(b));
    }
    inline std::uint64_t min(const std::int64_t a, const std::uint64_t b)
    {
        return sycl::min(static_cast<std::uint64_t>(a), b);
    }
    inline std::int64_t min(const std::int64_t a, const std::int64_t b)
    {
        return sycl::min(a, b);
    }
    inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b)
    {
        return sycl::min(a, b);
    }
    inline std::uint64_t min(const std::uint64_t a, const std::int32_t b)
    {
        return sycl::min(a, static_cast<std::uint64_t>(b));
    }
    inline std::uint64_t min(const std::int32_t a, const std::uint64_t b)
    {
        return sycl::min(static_cast<std::uint64_t>(a), b);
    }
    inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b)
    {
        return sycl::min(a, static_cast<std::uint64_t>(b));
    }
    inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b)
    {
        return sycl::min(static_cast<std::uint64_t>(a), b);
    }
    // max function overloads.
    // For floating-point types, `float` or `double` arguments are acceptable.
    // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
    // `std::int64_t` type arguments are acceptable.
    inline double max(const double a, const float b)
    {
        return sycl::fmax(a, static_cast<double>(b));
    }
    inline double max(const float a, const double b)
    {
        return sycl::fmax(static_cast<double>(a), b);
    }
    inline float max(const float a, const float b) { return sycl::fmax(a, b); }
    inline double max(const double a, const double b) { return sycl::fmax(a, b); }
    inline std::uint32_t max(const std::uint32_t a, const std::int32_t b)
    {
        return sycl::max(a, static_cast<std::uint32_t>(b));
    }
    inline std::uint32_t max(const std::int32_t a, const std::uint32_t b)
    {
        return sycl::max(static_cast<std::uint32_t>(a), b);
    }
    inline std::int32_t max(const std::int32_t a, const std::int32_t b)
    {
        return sycl::max(a, b);
    }
    inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b)
    {
        return sycl::max(a, b);
    }
    inline std::uint64_t max(const std::uint64_t a, const std::int64_t b)
    {
        return sycl::max(a, static_cast<std::uint64_t>(b));
    }
    inline std::uint64_t max(const std::int64_t a, const std::uint64_t b)
    {
        return sycl::max(static_cast<std::uint64_t>(a), b);
    }
    inline std::int64_t max(const std::int64_t a, const std::int64_t b)
    {
        return sycl::max(a, b);
    }
    inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b)
    {
        return sycl::max(a, b);
    }
    inline std::uint64_t max(const std::uint64_t a, const std::int32_t b)
    {
        return sycl::max(a, static_cast<std::uint64_t>(b));
    }
    inline std::uint64_t max(const std::int32_t a, const std::uint64_t b)
    {
        return sycl::max(static_cast<std::uint64_t>(a), b);
    }
    inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b)
    {
        return sycl::max(a, static_cast<std::uint64_t>(b));
    }
    inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b)
    {
        return sycl::max(static_cast<std::uint64_t>(a), b);
    }

    inline void
    has_capability_or_fail(const sycl::device &dev,
                           const std::initializer_list<sycl::aspect> &props)
    {
        for (const auto &it : props)
        {
            if (dev.has(it))
                continue;
            switch (it)
            {
            case sycl::aspect::fp64:
                throw std::runtime_error("'double' is not supported in '" +
                                         dev.get_info<sycl::info::device::name>() +
                                         "' device");
                break;
            case sycl::aspect::fp16:
                throw std::runtime_error("'half' is not supported in '" +
                                         dev.get_info<sycl::info::device::name>() +
                                         "' device");
                break;
            default:
#define __SYCL_ASPECT(ASPECT, ID) \
    case sycl::aspect::ASPECT:    \
        return #ASPECT;
#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
                auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string
                {
                    switch (AspectNum)
                    {
#include <sycl/info/aspects.def>
#include <sycl/info/aspects_deprecated.def>
                    default:
                        return "unknown aspect";
                    }
                };
#undef __SYCL_ASPECT_DEPRECATED_ALIAS
#undef __SYCL_ASPECT_DEPRECATED
#undef __SYCL_ASPECT
                throw std::runtime_error(
                    "'" + getAspectNameStr(it) + "' is not supported in '" +
                    dev.get_info<sycl::info::device::name>() + "' device");
            }
            break;
        }
    }

    static inline unsigned int get_current_device_id()
    {
        return dev_mgr::instance().current_device_id();
    }

    static inline device_ext &get_current_device()
    {
        return dev_mgr::instance().current_device();
    }

    static inline device_ext &get_device(unsigned int id)
    {
        return dev_mgr::instance().get_device(id);
    }

    static inline sycl::queue &get_in_order_queue()
    {
        return dev_mgr::instance().current_device().in_order_queue();
    }

    static sycl::event
    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
                memcpy_direction direction,
                const std::vector<sycl::event> &dep_events = {})
    {
        if (!size)
            return sycl::event{};
        return q.memcpy(to_ptr, from_ptr, size, dep_events);
        GGML_UNUSED(direction);
    }

    // Get actual copy range and make sure it will not exceed range.
    static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
                                        size_t pitch)
    {
        return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
    }

    static inline size_t get_offset(sycl::id<3> id, size_t slice,
                                    size_t pitch)
    {
        return slice * id.get(2) + pitch * id.get(1) + id.get(0);
    }

    /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
    /// and \p from_range to another specified by \p to_ptr and \p to_range.
    static inline std::vector<sycl::event>
    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
                sycl::range<3> to_range, sycl::range<3> from_range,
                sycl::id<3> to_id, sycl::id<3> from_id,
                sycl::range<3> size, memcpy_direction direction,
                const std::vector<sycl::event> &dep_events = {})
    {
        // RAII for host pointer
        class host_buffer
        {
            void *_buf;
            size_t _size;
            sycl::queue &_q;
            const std::vector<sycl::event> &_deps; // free operation depends

        public:
            host_buffer(size_t size, sycl::queue &q,
                        const std::vector<sycl::event> &deps)
                : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
            void *get_ptr() const { return _buf; }
            size_t get_size() const { return _size; }
            ~host_buffer()
            {
                if (_buf)
                {
                    _q.submit([&](sycl::handler &cgh)
                              {
            cgh.depends_on(_deps);
            cgh.host_task([buf = _buf] { std::free(buf); }); });
                }
            }
        };
        std::vector<sycl::event> event_list;

        size_t to_slice = to_range.get(1) * to_range.get(0),
               from_slice = from_range.get(1) * from_range.get(0);
        unsigned char *to_surface =
            (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
        const unsigned char *from_surface =
            (const unsigned char *)from_ptr +
            get_offset(from_id, from_slice, from_range.get(0));

        if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
        {
            return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
                                direction, dep_events)};
        }
        direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
        size_t size_slice = size.get(1) * size.get(0);
        switch (direction)
        {
        case host_to_host:
            for (size_t z = 0; z < size.get(2); ++z)
            {
                unsigned char *to_ptr = to_surface;
                const unsigned char *from_ptr = from_surface;
                if (to_range.get(0) == from_range.get(0) &&
                    to_range.get(0) == size.get(0))
                {
                    event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
                                                     direction, dep_events));
                }
                else
                {
                    for (size_t y = 0; y < size.get(1); ++y)
                    {
                        event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
                                                         direction, dep_events));
                        to_ptr += to_range.get(0);
                        from_ptr += from_range.get(0);
                    }
                }
                to_surface += to_slice;
                from_surface += from_slice;
            }
            break;
        case host_to_device:
        {
            host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
                            event_list);
            std::vector<sycl::event> host_events;
            if (to_slice == size_slice)
            {
                // Copy host data to a temp host buffer with the shape of target.
                host_events =
                    dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
                                sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
                                host_to_host, dep_events);
            }
            else
            {
                // Copy host data to a temp host buffer with the shape of target.
                host_events = dpct_memcpy(
                    q, buf.get_ptr(), from_surface, to_range, from_range,
                    sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
                    // If has padding data, not sure whether it is useless. So fill temp
                    // buffer with it.
                    std::vector<sycl::event>{
                        dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
                                    device_to_host, dep_events)});
            }
            // Copy from temp host buffer to device with only one submit.
            event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
                                             buf.get_size(), host_to_device,
                                             host_events));
            break;
        }
        case device_to_host:
        {
            host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
                            event_list);
            // Copy from host temp buffer to host target with reshaping.
            event_list = dpct_memcpy(
                q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
                sycl::id<3>(0, 0, 0), size, host_to_host,
                // Copy from device to temp host buffer with only one submit.
                std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
                                                     buf.get_size(),
                                                     device_to_host, dep_events)});
            break;
        }
        case device_to_device:
            event_list.push_back(q.submit([&](sycl::handler &cgh)
                                          {
        cgh.depends_on(dep_events);
        cgh.parallel_for<class dpct_memcpy_3d_detail>(
            size,
            [=](sycl::id<3> id) {
                to_surface[get_offset(id, to_slice, to_range.get(0))] =
                    from_surface[get_offset(id, from_slice, from_range.get(0))];
            }); }));
        break;
        default:
            throw std::runtime_error("dpct_memcpy: invalid direction value");
        }
        return event_list;
    }

    /// memcpy 2D/3D matrix specified by pitched_data.
    static inline std::vector<sycl::event>
    dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
                pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
                memcpy_direction direction = automatic)
    {
        return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
                           sycl::range<3>(to.get_pitch(), to.get_y(), 1),
                           sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
                           size, direction);
    }

    /// memcpy 2D matrix with pitch.
    static inline std::vector<sycl::event>
    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
                size_t to_pitch, size_t from_pitch, size_t x, size_t y,
                memcpy_direction direction = automatic)
    {
        return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
                           sycl::range<3>(from_pitch, y, 1),
                           sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
                           sycl::range<3>(x, y, 1), direction);
    }

    inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
                     oneapi::mkl::transpose b_trans, int m, int n, int k,
                     const void *alpha, const void *a, library_data_t a_type,
                     int lda, const void *b, library_data_t b_type, int ldb,
                     const void *beta, void *c, library_data_t c_type, int ldc,
                     library_data_t scaling_type)
    {
        if (scaling_type == library_data_t::real_float &&
            c_type == library_data_t::complex_float)
        {
            scaling_type = library_data_t::complex_float;
        }
        else if (scaling_type == library_data_t::real_double &&
                 c_type == library_data_t::complex_double)
        {
            scaling_type = library_data_t::complex_double;
        }

        std::uint64_t key =
            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
        switch (key)
        {
        case detail::get_type_combination_id(
            library_data_t::real_float, library_data_t::real_float,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_impl<float, float, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_double, library_data_t::real_double,
            library_data_t::real_double, library_data_t::real_double):
        {
            detail::gemm_impl<double, double, double, double>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::complex_float, library_data_t::complex_float,
            library_data_t::complex_float, library_data_t::complex_float):
        {
            detail::gemm_impl<std::complex<float>, std::complex<float>,
                              std::complex<float>, std::complex<float>>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::complex_double, library_data_t::complex_double,
            library_data_t::complex_double, library_data_t::complex_double):
        {
            detail::gemm_impl<std::complex<double>, std::complex<double>,
                              std::complex<double>, std::complex<double>>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_half, library_data_t::real_half):
        {
            detail::gemm_impl<sycl::half, sycl::half, sycl::half,
                              sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a,
                                          lda, b, ldb, beta, c, ldc);
            break;
        }
#ifdef __INTEL_MKL__
        case detail::get_type_combination_id(
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
                              float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
                                     ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_impl<sycl::half, sycl::half, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_half, library_data_t::real_float):
        {
            float alpha_value =
                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
            float beta_value =
                dpct::get_value(reinterpret_cast<const float *>(beta), q);
            sycl::half alpha_half(alpha_value);
            sycl::half beta_half(beta_value);
            detail::gemm_impl<sycl::half, sycl::half, sycl::half,
                              sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half,
                                          a, lda, b, ldb, &beta_half, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_int8, library_data_t::real_int8,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
            library_data_t::real_bfloat16, library_data_t::real_float):
        {
            detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
                              oneapi::mkl::bfloat16, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_int8, library_data_t::real_int8,
            library_data_t::real_int32, library_data_t::real_int32):
        {
            float alpha_float =
                dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
            float beta_float =
                dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
            detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
                q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc);
            break;
        }
#endif // __INTEL_MKL__
        default:
            throw std::runtime_error("the combination of data type is unsupported");
        }
    } // gemm()

    /// Computes a batch of matrix-matrix product with general matrices.
    /// \param [in] q The queue where the routine should be executed.
    /// \param [in] a_trans Specifies the operation applied to A.
    /// \param [in] b_trans Specifies the operation applied to B.
    /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
    /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
    /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
    /// \param [in] alpha Scaling factor for the matrix-matrix product.
    /// \param [in] a Input matrix A.
    /// \param [in] a_type Data type of the matrix A.
    /// \param [in] lda Leading dimension of A.
    /// \param [in] b Input matrix B.
    /// \param [in] b_type Data type of the matrix B.
    /// \param [in] ldb Leading dimension of B.
    /// \param [in] beta Scaling factor for matrix C.
    /// \param [in, out] c Input/Output matrix C.
    /// \param [in] c_type Data type of the matrix C.
    /// \param [in] ldc Leading dimension of C.
    /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
    /// \param [in] scaling_type Data type of the scaling factors.
    inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
                           oneapi::mkl::transpose b_trans, int m, int n, int k,
                           const void *alpha, const void *a[],
                           library_data_t a_type, int lda, const void *b[],
                           library_data_t b_type, int ldb, const void *beta,
                           void *c[], library_data_t c_type, int ldc,
                           int batch_size, library_data_t scaling_type)
    {
        if (scaling_type == library_data_t::real_float &&
            c_type == library_data_t::complex_float)
        {
            scaling_type = library_data_t::complex_float;
        }
        else if (scaling_type == library_data_t::real_double &&
                 c_type == library_data_t::complex_double)
        {
            scaling_type = library_data_t::complex_double;
        }

        std::uint64_t key =
            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
        switch (key)
        {
        case detail::get_type_combination_id(
            library_data_t::real_float, library_data_t::real_float,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<float, float, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
                batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_double, library_data_t::real_double,
            library_data_t::real_double, library_data_t::real_double):
        {
            detail::gemm_batch_impl<double, double, double, double>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
                batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::complex_float, library_data_t::complex_float,
            library_data_t::complex_float, library_data_t::complex_float):
        {
            detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
                                    std::complex<float>, std::complex<float>>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
                batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::complex_double, library_data_t::complex_double,
            library_data_t::complex_double, library_data_t::complex_double):
        {
            detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
                                    std::complex<double>, std::complex<double>>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
                batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_half, library_data_t::real_half):
        {
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
                                    sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
                                                a, lda, b, ldb, beta, c, ldc,
                                                batch_size);
            break;
        }
#ifdef __INTEL_MKL__
        case detail::get_type_combination_id(
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
            library_data_t::real_bfloat16, library_data_t::real_float):
        {
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
                                    oneapi::mkl::bfloat16, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
                batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
                                    float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
                                           b, ldb, beta, c, ldc, batch_size);
            break;
        }
#endif
        case detail::get_type_combination_id(
            library_data_t::real_int8, library_data_t::real_int8,
            library_data_t::real_int32, library_data_t::real_int32):
        {
            float alpha_float =
                dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
            float beta_float =
                dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
            detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
                                    float>(q, a_trans, b_trans, m, n, k, &alpha_float,
                                           a, lda, b, ldb, &beta_float, c, ldc,
                                           batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_int8, library_data_t::real_int8,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
                batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
                batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_half, library_data_t::real_float):
        {
            float alpha_value =
                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
            float beta_value =
                dpct::get_value(reinterpret_cast<const float *>(beta), q);
            sycl::half alpha_half(alpha_value);
            sycl::half beta_half(beta_value);
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
                q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
                batch_size);
            break;
        }
        default:
            throw std::runtime_error("the combination of data type is unsupported");
        }
    }

    /// Computes a batch of matrix-matrix product with general matrices.
    /// \param [in] q The queue where the routine should be executed.
    /// \param [in] a_trans Specifies the operation applied to A.
    /// \param [in] b_trans Specifies the operation applied to B.
    /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
    /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
    /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
    /// \param [in] alpha Scaling factor for the matrix-matrix product.
    /// \param [in] a Input matrix A.
    /// \param [in] a_type Data type of the matrix A.
    /// \param [in] lda Leading dimension of A.
    /// \param [in] stride_a Stride between the different A matrices.
    /// \param [in] b Input matrix B.
    /// \param [in] b_type Data type of the matrix B.
    /// \param [in] ldb Leading dimension of B.
    /// \param [in] stride_b Stride between the different B matrices.
    /// \param [in] beta Scaling factor for matrix C.
    /// \param [in, out] c Input/Output matrix C.
    /// \param [in] c_type Data type of the matrix C.
    /// \param [in] ldc Leading dimension of C.
    /// \param [in] stride_c Stride between the different C matrices.
    /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
    /// \param [in] scaling_type Data type of the scaling factors.
    inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
                           oneapi::mkl::transpose b_trans, int m, int n, int k,
                           const void *alpha, const void *a, library_data_t a_type,
                           int lda, long long int stride_a, const void *b,
                           library_data_t b_type, int ldb, long long int stride_b,
                           const void *beta, void *c, library_data_t c_type,
                           int ldc, long long int stride_c, int batch_size,
                           library_data_t scaling_type)
    {
        if (scaling_type == library_data_t::real_float &&
            c_type == library_data_t::complex_float)
        {
            scaling_type = library_data_t::complex_float;
        }
        else if (scaling_type == library_data_t::real_double &&
                 c_type == library_data_t::complex_double)
        {
            scaling_type = library_data_t::complex_double;
        }

        std::uint64_t key =
            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
        switch (key)
        {
        case detail::get_type_combination_id(
            library_data_t::real_float, library_data_t::real_float,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<float, float, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
                beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_double, library_data_t::real_double,
            library_data_t::real_double, library_data_t::real_double):
        {
            detail::gemm_batch_impl<double, double, double, double>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
                beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::complex_float, library_data_t::complex_float,
            library_data_t::complex_float, library_data_t::complex_float):
        {
            detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
                                    std::complex<float>, std::complex<float>>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
                beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::complex_double, library_data_t::complex_double,
            library_data_t::complex_double, library_data_t::complex_double):
        {
            detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
                                    std::complex<double>, std::complex<double>>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
                beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_half, library_data_t::real_half):
        {
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
                                    sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
                                                a, lda, stride_a, b, ldb, stride_b,
                                                beta, c, ldc, stride_c, batch_size);
            break;
        }
#ifdef __INTEL_MKL__
        case detail::get_type_combination_id(
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
            library_data_t::real_bfloat16, library_data_t::real_float):
        {
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
                                    oneapi::mkl::bfloat16, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
                beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
                                    float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
                                           stride_a, b, ldb, stride_b, beta, c, ldc,
                                           stride_c, batch_size);
            break;
        }
#endif
        case detail::get_type_combination_id(
            library_data_t::real_int8, library_data_t::real_int8,
            library_data_t::real_int32, library_data_t::real_int32):
        {
            detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
                                    std::int32_t>(q, a_trans, b_trans, m, n, k, alpha,
                                                  a, lda, stride_a, b, ldb, stride_b,
                                                  beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_int8, library_data_t::real_int8,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
                beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_float, library_data_t::real_float):
        {
            detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
                beta, c, ldc, stride_c, batch_size);
            break;
        }
        case detail::get_type_combination_id(
            library_data_t::real_half, library_data_t::real_half,
            library_data_t::real_half, library_data_t::real_float):
        {
            float alpha_value =
                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
            float beta_value =
                dpct::get_value(reinterpret_cast<const float *>(beta), q);
            sycl::half alpha_half(alpha_value);
            sycl::half beta_half(beta_value);
            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
                q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b,
                &beta_half, c, ldc, stride_c, batch_size);
            break;
        }
        default:
            throw std::runtime_error("the combination of data type is unsupported");
        }
    }

    static inline void
    async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr,
                      size_t from_pitch, size_t x, size_t y,
                      memcpy_direction direction = automatic,
                      sycl::queue &q = get_default_queue())
    {
        detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y,
                            direction);
    }

    using err0 = detail::generic_error_type<struct err0_tag, int>;
    using err1 = detail::generic_error_type<struct err1_tag, int>;

    static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) {
        detail::dpct_free(ptr, q);
    }

    /// dpct accessor used as device function parameter.
    template <class T, memory_region Memory, size_t Dimension> class accessor;
    template <class T, memory_region Memory> class accessor<T, Memory, 3> {
    public:
        using memory_t = detail::memory_traits<Memory, T>;
        using element_t = typename memory_t::element_t;
        using pointer_t = typename memory_t::pointer_t;
        using accessor_t = typename memory_t::template accessor_t<3>;
        accessor(pointer_t data, const sycl::range<3> &in_range)
            : _data(data), _range(in_range) {}
        template <memory_region M = Memory>
        accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
            : accessor(acc, acc.get_range()) {}
        accessor(const accessor_t &acc, const sycl::range<3> &in_range)
            : accessor(acc.get_pointer(), in_range) {}
        accessor<T, Memory, 2> operator[](size_t index) const {
            sycl::range<2> sub(_range.get(1), _range.get(2));
            return accessor<T, Memory, 2>(_data + index * sub.size(), sub);
        }

        pointer_t get_ptr() const { return _data; }

    private:
        pointer_t _data;
        sycl::range<3> _range;
    };
    template <class T, memory_region Memory> class accessor<T, Memory, 2> {
    public:
        using memory_t = detail::memory_traits<Memory, T>;
        using element_t = typename memory_t::element_t;
        using pointer_t = typename memory_t::pointer_t;
        using accessor_t = typename memory_t::template accessor_t<2>;
        accessor(pointer_t data, const sycl::range<2> &in_range)
            : _data(data), _range(in_range) {}
        template <memory_region M = Memory>
        accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
            : accessor(acc, acc.get_range()) {}
        accessor(const accessor_t &acc, const sycl::range<2> &in_range)
            : accessor(acc.get_pointer(), in_range) {}

        pointer_t operator[](size_t index) const {
            return _data + _range.get(1) * index;
        }

        pointer_t get_ptr() const { return _data; }

    private:
        pointer_t _data;
        sycl::range<2> _range;
    };

    namespace detail {
        /// Device variable with address space of shared, global or constant.
        template <class T, memory_region Memory, size_t Dimension> class device_memory {
        public:
            using accessor_t =
                typename detail::memory_traits<Memory,
                                            T>::template accessor_t<Dimension>;
            using value_t = typename detail::memory_traits<Memory, T>::value_t;
            using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>;

            device_memory() : device_memory(sycl::range<Dimension>(1)) {}

            /// Constructor of 1-D array with initializer list
            device_memory(const sycl::range<Dimension> &in_range,
                        std::initializer_list<value_t> &&init_list)
                : device_memory(in_range) {
                assert(init_list.size() <= in_range.size());
                _host_ptr = (value_t *)std::malloc(_size);
                std::memset(_host_ptr, 0, _size);
                std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T));
            }

            /// Constructor of 2-D array with initializer list
            template <size_t D = Dimension>
            device_memory(
                const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range,
                std::initializer_list<std::initializer_list<value_t>> &&init_list)
                : device_memory(in_range) {
                assert(init_list.size() <= in_range[0]);
                _host_ptr = (value_t *)std::malloc(_size);
                std::memset(_host_ptr, 0, _size);
                auto tmp_data = _host_ptr;
                for (auto sub_list : init_list) {
                    assert(sub_list.size() <= in_range[1]);
                    std::memcpy(tmp_data, sub_list.begin(),
                                sub_list.size() * sizeof(T));
                    tmp_data += in_range[1];
                }
            }

            /// Constructor with range
            device_memory(const sycl::range<Dimension> &range_in)
                : _size(range_in.size() * sizeof(T)), _range(range_in),
                _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) {
                static_assert(
                    (Memory == global) || (Memory == constant) || (Memory == shared),
                    "device memory region should be global, constant or shared");
                // Make sure that singleton class mem_mgr and dev_mgr will destruct
                // later than this.
                detail::mem_mgr::instance();
                dev_mgr::instance();
            }

            /// Constructor with range
            template <class... Args>
            device_memory(Args... Arguments)
                : device_memory(sycl::range<Dimension>(Arguments...)) {}

            ~device_memory() {
                if (_device_ptr && !_reference)
                    dpct::dpct_free(_device_ptr);
                if (_host_ptr)
                    std::free(_host_ptr);
            }

            /// Allocate memory with default queue, and init memory if has initial
            /// value.
            void init() { init(dpct::get_default_queue()); }
            /// Allocate memory with specified queue, and init memory if has initial
            /// value.
            void init(sycl::queue &q) {
                if (_device_ptr)
                    return;
                if (!_size)
                    return;
                allocate_device(q);
                if (_host_ptr)
                    detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size,
                                        host_to_device);
            }

            /// The variable is assigned to a device pointer.
            void assign(value_t *src, size_t size) {
                this->~device_memory();
                new (this) device_memory(src, size);
            }

            /// Get memory pointer of the memory object, which is virtual pointer when
            /// usm is not used, and device pointer when usm is used.
            value_t *get_ptr() { return get_ptr(get_default_queue()); }
            /// Get memory pointer of the memory object, which is virtual pointer when
            /// usm is not used, and device pointer when usm is used.
            value_t *get_ptr(sycl::queue &q) {
                init(q);
                return _device_ptr;
            }

            /// Get the device memory object size in bytes.
            size_t get_size() { return _size; }

            template <size_t D = Dimension>
            typename std::enable_if<D == 1, T>::type &operator[](size_t index) {
                init();
                return _device_ptr[index];
            }

            /// Get dpct::accessor with dimension info for the device memory object
            /// when usm is used and dimension is greater than 1.
            template <size_t D = Dimension>
            typename std::enable_if<D != 1, dpct_accessor_t>::type
            get_access([[maybe_unused]] sycl::handler &cgh) {
                return dpct_accessor_t((T *)_device_ptr, _range);
            }

        private:
            device_memory(value_t *memory_ptr, size_t size)
                : _size(size), _range(size / sizeof(T)), _reference(true),
                _device_ptr(memory_ptr) {}

            void allocate_device(sycl::queue &q) {
        #ifndef DPCT_USM_LEVEL_NONE
                if (Memory == shared) {
                    _device_ptr = (value_t *)sycl::malloc_shared(_size, q.get_device(),
                                                                q.get_context());
                    return;
                }
        #ifdef SYCL_EXT_ONEAPI_USM_DEVICE_READ_ONLY
                if (Memory == constant) {
                    _device_ptr = (value_t *)sycl::malloc_device(
                        _size, q.get_device(), q.get_context(),
                        sycl::ext::oneapi::property::usm::device_read_only());
                    return;
                }
        #endif
        #endif
                _device_ptr = (value_t *)detail::dpct_malloc(_size, q);
            }

            size_t _size;
            sycl::range<Dimension> _range;
            bool _reference;
            value_t *_host_ptr;
            value_t *_device_ptr;
        };
        template <class T, memory_region Memory>
        class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> {
        public:
            using base = device_memory<T, Memory, 1>;
            using value_t = typename base::value_t;
            using accessor_t =
                typename detail::memory_traits<Memory, T>::template accessor_t<0>;

            /// Constructor with initial value.
            device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {}

            /// Default constructor
            device_memory() : base(1) {}
        };
        } // namespace detail

    template <class T, size_t Dimension>
    using global_memory = detail::device_memory<T, global, Dimension>;
    template <class T, size_t Dimension>
    using constant_memory = detail::device_memory<T, constant, Dimension>;
    template <class T, size_t Dimension>
    using shared_memory = detail::device_memory<T, shared, Dimension>;


    template <typename T,
            sycl::access::address_space addressSpace =
                sycl::access::address_space::global_space,
            sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
            sycl::memory_scope memoryScope = sycl::memory_scope::device>
    inline T atomic_fetch_add(T *addr, T operand) {
    auto atm =
        sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]);
    return atm.fetch_add(operand);
    }

    template <sycl::access::address_space addressSpace =
                sycl::access::address_space::global_space,
            sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
            sycl::memory_scope memoryScope = sycl::memory_scope::device,
            typename T1, typename T2>
    inline T1 atomic_fetch_add(T1 *addr, T2 operand) {
    auto atm =
        sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]);
    return atm.fetch_add(operand);
    }

    template <typename T, sycl::access::address_space addressSpace =
                            sycl::access::address_space::global_space>
    inline T atomic_fetch_add(T *addr, T operand,
                            sycl::memory_order memoryOrder) {
    switch (memoryOrder) {
        case sycl::memory_order::relaxed:
            return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed,
                                    sycl::memory_scope::device>(addr, operand);
        case sycl::memory_order::acq_rel:
            return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel,
                                    sycl::memory_scope::device>(addr, operand);
        case sycl::memory_order::seq_cst:
            return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst,
                                    sycl::memory_scope::device>(addr, operand);
        default:
            assert(false && "Invalid memory_order for atomics. Valid memory_order for "
                            "atomics are: sycl::memory_order::relaxed, "
                            "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!");
        }
    }

    template <sycl::access::address_space addressSpace =
                sycl::access::address_space::global_space,
            typename T1, typename T2>
    inline T1 atomic_fetch_add(T1 *addr, T2 operand,
                            sycl::memory_order memoryOrder) {
    atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder);
    }

} // COPY from DPCT head files

#endif // GGML_SYCL_DPCT_HELPER_HPP