File size: 12,391 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>

static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
    int N = (int) tokens.size();
    for (int i = 0; i < N; i += n_batch) {
        int n_eval = (int) tokens.size() - i;
        if (n_eval > n_batch) {
            n_eval = n_batch;
        }
        if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
            LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
            return false;
        }
        *n_past += n_eval;
    }
    return true;
}

static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
    std::vector<llama_token> tokens;
    tokens.push_back(id);
    return eval_tokens(ctx_llama, tokens, 1, n_past);
}

static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
    std::string              str2     = str;
    std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
    eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
    return true;
}

static const char * sample(struct common_sampler * smpl,
                           struct llama_context * ctx_llama,
                           int * n_past) {
    const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
    common_sampler_accept(smpl, id, true);
    static std::string ret;
    if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
        ret = "</s>";
    } else {
        ret = common_token_to_piece(ctx_llama, id);
    }
    eval_id(ctx_llama, id, n_past);
    return ret.c_str();
}

static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
static const char* IMG_BASE64_TAG_END = "\">";

static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
    begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
    end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
}

static bool prompt_contains_image(const std::string& prompt) {
    size_t begin, end;
    find_image_tag_in_prompt(prompt, begin, end);
    return (begin != std::string::npos);
}

// replaces the base64 image tag in the prompt with `replacement`
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
    size_t img_base64_str_start, img_base64_str_end;
    find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
    if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
        LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
        return NULL;
    }

    auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
    auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
    auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );

    auto required_bytes = base64::required_encode_size(base64_str.size());
    auto img_bytes = std::vector<unsigned char>(required_bytes);
    base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());

    auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
    if (!embed) {
        LOG_ERR("%s: could not load image from base64 string.\n", __func__);
        return NULL;
    }

    return embed;
}

static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
    size_t begin, end;
    find_image_tag_in_prompt(prompt, begin, end);
    if (begin == std::string::npos || end == std::string::npos) {
        return prompt;
    }
    auto pre = prompt.substr(0, begin);
    auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
    return pre + replacement + post;
}

struct llava_context {
    struct clip_ctx * ctx_clip = NULL;
    struct llama_context * ctx_llama = NULL;
    struct llama_model * model = NULL;
};

static void print_usage(int, char ** argv) {
    LOG("\n example usage:\n");
    LOG("\n     %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
    LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
}

static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {

    // load and preprocess the image
    llava_image_embed * embed = NULL;
    auto prompt = params->prompt;
    if (prompt_contains_image(prompt)) {
        if (!params->image.empty()) {
            LOG_INF("using base64 encoded image instead of command line image path\n");
        }
        embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
        if (!embed) {
            LOG_ERR("%s: can't load image from prompt\n", __func__);
            return NULL;
        }
        params->prompt = remove_image_from_prompt(prompt);
    } else {
        embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
        if (!embed) {
            fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
            return NULL;
        }
    }

    return embed;
}

static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
    int n_past = 0;

    const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;

    std::string system_prompt, user_prompt;
    size_t image_pos = prompt.find("<image>");
    if (image_pos != std::string::npos) {
        // new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
        system_prompt = prompt.substr(0, image_pos);
        user_prompt = prompt.substr(image_pos + std::string("<image>").length());
        LOG_INF("system_prompt: %s\n", system_prompt.c_str());
        if (params->verbose_prompt) {
            auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
            for (int i = 0; i < (int) tmp.size(); i++) {
                LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
            }
        }
        LOG_INF("user_prompt: %s\n", user_prompt.c_str());
        if (params->verbose_prompt) {
            auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
            for (int i = 0; i < (int) tmp.size(); i++) {
                LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
            }
        }
    } else {
        // llava-1.5 native mode
        system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
        user_prompt = prompt + "\nASSISTANT:";
        if (params->verbose_prompt) {
            auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
            for (int i = 0; i < (int) tmp.size(); i++) {
                LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
            }
        }
    }

    eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
    llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
    eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);

    // generate the response

    LOG("\n");

    struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
    if (!smpl) {
        LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
        exit(1);
    }

    std::string response = "";
    for (int i = 0; i < max_tgt_len; i++) {
        const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
        response += tmp;
        if (strcmp(tmp, "</s>") == 0) break;
        if (strstr(tmp, "###")) break; // Yi-VL behavior
        LOG("%s", tmp);
        if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
        if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
        if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6

        fflush(stdout);
    }

    common_sampler_free(smpl);
    LOG("\n");
}

static struct llama_model * llava_init(common_params * params) {
    llama_backend_init();
    llama_numa_init(params->numa);

    llama_model_params model_params = common_model_params_to_llama(*params);

    llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
    if (model == NULL) {
        LOG_ERR("%s: unable to load model\n" , __func__);
        return NULL;
    }
    return model;
}

static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
    const char * clip_path = params->mmproj.c_str();

    auto prompt = params->prompt;
    if (prompt.empty()) {
        prompt = "describe the image in detail.";
    }

    auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);


    llama_context_params ctx_params = common_context_params_to_llama(*params);
    ctx_params.n_ctx           = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings

    llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);

    if (ctx_llama == NULL) {
        LOG_ERR("%s: failed to create the llama_context\n" , __func__);
        return NULL;
    }

    auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));

    ctx_llava->ctx_llama = ctx_llama;
    ctx_llava->ctx_clip = ctx_clip;
    ctx_llava->model = model;
    return ctx_llava;
}

static void llava_free(struct llava_context * ctx_llava) {
    if (ctx_llava->ctx_clip) {
        clip_free(ctx_llava->ctx_clip);
        ctx_llava->ctx_clip = NULL;
    }

    llama_free(ctx_llava->ctx_llama);
    llama_free_model(ctx_llava->model);
    llama_backend_free();
}

int main(int argc, char ** argv) {
    ggml_time_init();

    common_params params;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
        return 1;
    }

    common_init();

    if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
        print_usage(argc, argv);
        return 1;
    }

    auto * model = llava_init(&params);
    if (model == NULL) {
        fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
        return 1;
    }

    if (prompt_contains_image(params.prompt)) {
        auto * ctx_llava = llava_init_context(&params, model);

        auto * image_embed = load_image(ctx_llava, &params, "");

        // process the prompt
        process_prompt(ctx_llava, image_embed, &params, params.prompt);

        llama_perf_context_print(ctx_llava->ctx_llama);
        llava_image_embed_free(image_embed);
        ctx_llava->model = NULL;
        llava_free(ctx_llava);
    } else {
        for (auto & image : params.image) {
            auto * ctx_llava = llava_init_context(&params, model);

            auto * image_embed = load_image(ctx_llava, &params, image);
            if (!image_embed) {
                LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
                return 1;
            }

            // process the prompt
            process_prompt(ctx_llava, image_embed, &params, params.prompt);

            llama_perf_context_print(ctx_llava->ctx_llama);
            llava_image_embed_free(image_embed);
            ctx_llava->model = NULL;
            llava_free(ctx_llava);
        }
    }

    llama_free_model(model);

    return 0;
}