File size: 7,153 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"

#include <algorithm>
#include <cstdio>
#include <string>
#include <vector>

static void print_usage(int, char ** argv) {
    LOG("\nexample usage:\n");
    LOG("\n    %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
    LOG("\n");
}

int main(int argc, char ** argv) {
    common_params params;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
        return 1;
    }

    common_init();

    int is_pp_shared = params.is_pp_shared;

    std::vector<int> n_pp = params.n_pp;
    std::vector<int> n_tg = params.n_tg;
    std::vector<int> n_pl = params.n_pl;

    // init LLM

    llama_backend_init();
    llama_numa_init(params.numa);

    // initialize the model

    llama_model_params model_params = common_model_params_to_llama(params);

    llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

    if (model == NULL) {
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
        return 1;
    }

    llama_context_params ctx_params = common_context_params_to_llama(params);

    // ensure enough sequences are available
    ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());

    llama_context * ctx = llama_new_context_with_model(model, ctx_params);

    if (ctx == NULL) {
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
        return 1;
    }

    const int32_t n_kv_max = llama_n_ctx(ctx);

    llama_batch batch = llama_batch_init(n_kv_max, 0, 1);

    // decode in batches of ctx_params.n_batch tokens
    auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
        for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
            const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));

            llama_batch batch_view = {
                n_tokens,
                batch.token    + i,
                nullptr,
                batch.pos      + i,
                batch.n_seq_id + i,
                batch.seq_id   + i,
                batch.logits   + i,
            };

            const int ret = llama_decode(ctx, batch_view);
            if (ret != 0) {
                LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
                return false;
            }

            llama_synchronize(ctx);
        }

        return true;
    };

    // warm up
    {
        for (int i = 0; i < 16; ++i) {
            common_batch_add(batch, 0, i, { 0 }, false);
        }

        if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
            LOG_ERR("%s: llama_decode() failed\n", __func__);
            return 1;
        }
    }

    if (!params.batched_bench_output_jsonl) {
        LOG("\n");
        LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
        LOG("\n");
        LOG("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
        LOG("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
    }

    for (        int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
        for (    int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
            for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
                const int pp = n_pp[i_pp];
                const int tg = n_tg[i_tg];
                const int pl = n_pl[i_pl];

                const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);

                if (n_ctx_req > n_kv_max) {
                    continue;
                }

                common_batch_clear(batch);

                for (int i = 0; i < pp; ++i) {
                    for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
                        common_batch_add(batch, 0, i, { j }, false);
                    }
                }
                batch.logits[batch.n_tokens - 1] = true;

                const auto t_pp_start = ggml_time_us();

                llama_kv_cache_clear(ctx);

                if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
                    LOG_ERR("%s: llama_decode() failed\n", __func__);
                    return 1;
                }

                if (is_pp_shared) {
                    for (int32_t i = 1; i < pl; ++i) {
                        llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
                    }
                }

                const auto t_pp_end = ggml_time_us();

                const auto t_tg_start = ggml_time_us();

                for (int i = 0; i < tg; ++i) {
                    common_batch_clear(batch);

                    for (int j = 0; j < pl; ++j) {
                        common_batch_add(batch, 0, pp + i, { j }, true);
                    }

                    if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
                        LOG_ERR("%s: llama_decode() failed\n", __func__);
                        return 1;
                    }
                }

                const auto t_tg_end = ggml_time_us();

                const int32_t n_kv = n_ctx_req;

                const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
                const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
                const float t    = t_pp + t_tg;

                const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
                const float speed_tg = pl*tg / t_tg;
                const float speed    = n_kv / t;

                if(params.batched_bench_output_jsonl) {
                    LOG(
                        "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
                        "\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n",
                        n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
                        pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed
                    );
                } else {
                    LOG("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
                }
            }
        }
    }

    LOG("\n");
    llama_perf_context_print(ctx);

    llama_batch_free(batch);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    LOG("\n\n");

    return 0;
}