Spaces:
Sleeping
Sleeping
File size: 51,582 Bytes
cd822ef 268ce99 78ad9fc cd822ef 4ea9d05 78ad9fc 4e0b9c1 9769a4a cd822ef 78ad9fc 228df34 cd822ef 268ce99 cd822ef 78ad9fc 228df34 268ce99 cd822ef 78ad9fc 900d247 268ce99 cd822ef 78ad9fc 268ce99 cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 78ad9fc cd822ef 78ad9fc cd822ef 78ad9fc 4ea9d05 cd822ef 268ce99 cd822ef 268ce99 cd822ef 4ea9d05 cd822ef 268ce99 cd822ef 78ad9fc 4ea9d05 cd822ef 268ce99 cd822ef 4ea9d05 cd822ef 4ea9d05 268ce99 78ad9fc cd822ef 4ea9d05 268ce99 78ad9fc cd822ef 78ad9fc 268ce99 78ad9fc cd822ef 78ad9fc cd822ef 78ad9fc 268ce99 cd822ef 268ce99 cd822ef 4ea9d05 cd822ef 4ea9d05 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 78ad9fc cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 cd822ef 268ce99 cd822ef 78ad9fc 268ce99 78ad9fc cd822ef 78ad9fc 9769a4a 78ad9fc cd822ef 78ad9fc 900d247 78ad9fc 268ce99 78ad9fc 268ce99 78ad9fc 268ce99 78ad9fc 268ce99 78ad9fc 9769a4a 78ad9fc 268ce99 78ad9fc 268ce99 78ad9fc 268ce99 78ad9fc 228df34 78ad9fc cd822ef 78ad9fc 268ce99 78ad9fc 268ce99 78ad9fc 9769a4a 78ad9fc 268ce99 78ad9fc 9769a4a 900d247 4ea9d05 cd822ef 268ce99 cd822ef 78ad9fc cd822ef 268ce99 cd822ef 268ce99 cd822ef 268ce99 cd822ef 152870d 268ce99 4e0b9c1 cd822ef 4e0b9c1 4ea9d05 cd822ef 152870d 78ad9fc cd822ef aeac5cd cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 78ad9fc cd822ef 268ce99 cd822ef 78ad9fc 268ce99 cd822ef 78ad9fc cd822ef 268ce99 78ad9fc cd822ef 78ad9fc cd822ef 78ad9fc 268ce99 78ad9fc cd822ef 268ce99 cd822ef 228df34 268ce99 078cf80 cd822ef 268ce99 cd822ef 268ce99 4ea9d05 268ce99 4ea9d05 cd822ef c5c5f74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 |
# app.py โ GIftyPlus (lean)
# -----------------------------------------------------------------------------
# High-level overview
# -----------------------------------------------------------------------------
# GIftyPlus is a lightweight gift recommender + DIY generator.
# Pipeline:
# 1) Load & normalize an Amazon-like product dataset (name/desc/tags/price/img).
# 2) Build sentence embeddings for semantic retrieval (cached to .npy).
# 3) Rank items with a weighted score (embeddings + optional cross-encoder +
# interest/occasion/price bonuses) and diversify with MMR.
# 4) Generate a DIY gift idea (FLAN-T5), then embed 10 candidates and append
# the best one as a "Generated" #4 result.
# 5) Generate a short personalized message (FLAN-T5) with basic validators.
# 6) Gradio UI: input form, input summary, top-3 + generated #4, DIY section,
# and personalized message section.
#
# Env vars you can override:
# DATASET_ID, DATASET_SPLIT, MAX_ROWS,
# EMBED_MODEL_ID, RERANK_MODEL_ID,
# DIY_MODEL_ID, MAX_INPUT_TOKENS, DIY_MAX_NEW_TOKENS.
# -----------------------------------------------------------------------------
import os, re, json, hashlib, pathlib, random
from typing import Dict, List, Tuple, Optional, Any
import numpy as np, pandas as pd, gradio as gr, torch
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
TITLE = "# ๐ GIftyPlus - Smart Gift Recommender\n*Top-3 catalog picks + 1 DIY gift + personalized message*"
DATASET_ID = os.getenv("DATASET_ID", "Danielos100/Amazon_products_clean")
DATASET_SPLIT = os.getenv("DATASET_SPLIT", "train")
MAX_ROWS = int(os.getenv("MAX_ROWS", "12000"))
EMBED_MODEL_ID = os.getenv("EMBED_MODEL_ID", "sentence-transformers/all-MiniLM-L12-v2")
def resolve_cache_dir():
# Choose the first writable cache directory:
# 1) EMBED_CACHE_DIR env, 2) project .gifty_cache, 3) /tmp/.gifty_cache
for p in [os.getenv("EMBED_CACHE_DIR"), os.path.join(os.getcwd(), ".gifty_cache"), "/tmp/.gifty_cache"]:
if not p: continue
pathlib.Path(p).mkdir(parents=True, exist_ok=True)
with open(os.path.join(p, ".write_test"), "w") as f: f.write("ok")
pathlib.Path(os.path.join(p, ".write_test")).unlink(missing_ok=True)
return p
return os.getcwd()
EMBED_CACHE_DIR = resolve_cache_dir()
# UI vocab / options
INTEREST_OPTIONS = ["Sports","Travel","Cooking","Technology","Music","Art","Reading","Gardening","Fashion","Gaming","Photography","Hiking","Movies","Crafts","Pets","Wellness","Collecting","Food","Home decor","Science"]
OCCASION_UI = ["Birthday","Wedding / Engagement","Anniversary","Graduation","New baby","Housewarming","Retirement","Holidays","Valentineโs Day","Promotion / New job","Get well soon"]
OCCASION_CANON = {"Birthday":"birthday","Wedding / Engagement":"wedding","Anniversary":"anniversary","Graduation":"graduation","New baby":"new_baby","Housewarming":"housewarming","Retirement":"retirement","Holidays":"holidays","Valentineโs Day":"valentines","Promotion / New job":"promotion","Get well soon":"get_well"}
RECIPIENT_RELATIONSHIPS = ["Family - Parent","Family - Sibling","Family - Child","Family - Other relative","Friend","Colleague","Boss","Romantic partner","Teacher / Mentor","Neighbor","Client / Business partner"]
MESSAGE_TONES = ["Formal","Casual","Funny","Heartfelt","Inspirational","Playful","Romantic","Appreciative","Encouraging"]
AGE_OPTIONS = {"any":"any","kid (3โ12)":"kids","teen (13โ17)":"teens","adult (18โ64)":"adult","senior (65+)":"senior"}
GENDER_OPTIONS = ["any","female","male","nonbinary"]
# Light synonym expansion for interests; used to enrich queries and "hit" checks
SYNONYMS = {"sports":["fitness","outdoor","training","yoga","run"],"travel":["luggage","passport","map","trip","vacation"],"cooking":["kitchen","cookware","chef","baking"],"technology":["electronics","gadgets","device","smart","computer"],"music":["audio","headphones","earbuds","speaker","vinyl"],"art":["painting","drawing","sketch","canvas"],"reading":["book","novel","literature"],"gardening":["plants","planter","seeds","garden","indoor"],"fashion":["style","accessory","jewelry"],"gaming":["board game","puzzle","video game","controller"],"photography":["camera","lens","tripod","film"],"hiking":["outdoor","camping","backpack","trek"],"movies":["film","cinema","blu-ray","poster"],"crafts":["diy","handmade","kit","knitting"],"pets":["dog","cat","pet"],"wellness":["relaxation","spa","aromatherapy","self-care"],"collecting":["display","collector","limited edition"],"food":["gourmet","snack","treats","chocolate"],"home decor":["home","decor","wall art","candle"],"science":["lab","experiment","STEM","microscope"]}
REL_TO_TOKENS = {"Family - Parent":["parent","family"],"Family - Sibling":["sibling","family"],"Family - Child":["kids","play","family"],"Family - Other relative":["family","relative"],"Friend":["friendly"],"Colleague":["office","work","professional"],"Boss":["executive","professional","premium"],"Romantic partner":["romantic","couple"],"Teacher / Mentor":["teacher","mentor","thank_you"],"Neighbor":["neighbor","housewarming"],"Client / Business partner":["professional","thank_you","premium"]}
# --- Price parsing helpers (robust to currency symbols and ranges) ---
_CURRENCY_RE = re.compile(r"[^\d.,\-]+"); _NUM_RE = re.compile(r"(\d+(?:[.,]\d+)?)"); _RANGE_SEP = re.compile(r"\s*(?:-|โ|โ|to)\s*")
def _to_price_usd(x):
if pd.isna(x): return np.nan
s = str(x).strip().lower()
if _RANGE_SEP.search(s): s = _RANGE_SEP.split(s)[0]
s = _CURRENCY_RE.sub(" ", s); m = _NUM_RE.search(s.replace(",", "."))
return float(m.group(1)) if m else np.nan
def _first_present(df, cands):
# Return the first column name that exists in df out of candidates (case-insensitive)
lower = {c.lower(): c for c in df.columns}
for c in cands:
if c in df.columns: return c
if c.lower() in lower: return lower[c.lower()]
return None
def _auto_price_col(df):
# Heuristics for price column detection when column name is unknown
for c in df.columns:
s = df[c]
if pd.api.types.is_numeric_dtype(s) and not s.dropna().empty and (s.dropna().between(0.5, 10000)).mean() > .6: return c
for c in df.columns:
if df[c].astype(str).head(200).str.lower().str.contains(r"\$|โช|eur|usd|ยฃ|โฌ|\d").mean() > .5: return c
return None
def map_amazon_to_schema(raw: pd.DataFrame) -> pd.DataFrame:
# Map arbitrary Amazon-like columns into a compact schema suitable for retrieval
name_c=_first_present(raw,["product name","title","name","product_title"]); desc_c=_first_present(raw,["description","product_description","feature","about"])
cat_c=_first_present(raw,["category","categories","main_cat","product_category"]); price_c=_first_present(raw,["selling price","price","current_price","list_price","price_amount","actual_price","price_usd"]) or _auto_price_col(raw)
img_c=_first_present(raw,["image","image_url","imageurl","imUrl","img","img_url"])
df=pd.DataFrame({"name":raw.get(name_c,""),"short_desc":raw.get(desc_c,""),"tags":raw.get(cat_c,""),"price_usd":raw.get(price_c,np.nan),"image_url":raw.get(img_c,"")})
# Light normalization / truncation to keep UI compact
df["price_usd"]=df["price_usd"].map(_to_price_usd); df["name"]=df["name"].astype(str).str.strip().str.slice(0,160)
df["short_desc"]=df["short_desc"].astype(str).str.strip().str.slice(0,600); df["tags"]=df["tags"].astype(str).str.replace("|",", ").str.lower()
return df
def extract_top_cat(tags:str)->str:
# Extract a "top-level" category token for quick grouping/labeling
s=(tags or "").lower()
for sep in ["|",">"]:
if sep in s: return s.split(sep,1)[0].strip()
return s.strip().split(",")[0] if s else ""
def load_catalog()->pd.DataFrame:
# Load dataset โ normalize schema โ filter โ light feature engineering
df=map_amazon_to_schema(load_dataset(DATASET_ID, split=DATASET_SPLIT).to_pandas()).drop_duplicates(subset=["name","short_desc"])
df=df[pd.notna(df["price_usd"])]; df=df[(df["price_usd"]>0)&(df["price_usd"]<=500)].reset_index(drop=True)
if len(df)>MAX_ROWS: df=df.sample(n=MAX_ROWS,random_state=42).reset_index(drop=True)
df["doc"]=(df["name"].fillna("")+" | "+df["tags"].fillna("")+" | "+df["short_desc"].fillna("")).str.strip()
df["top_cat"]=df["tags"].map(extract_top_cat)
df["blob"]=(df["name"].fillna("")+" "+df["tags"].fillna("")+" "+df["short_desc"].fillna("")).str.lower()
return df
CATALOG=load_catalog()
# -----------------------------------------------------------------------------
# Embedding bank with on-disk caching
# -----------------------------------------------------------------------------
class EmbeddingBank:
def __init__(s, docs, model_id, dataset_tag):
s.model_id=model_id; s.dataset_tag=dataset_tag; s.model=SentenceTransformer(model_id); s.embs=s._load_or_build(docs)
def _cache_path(s,n): return os.path.join(EMBED_CACHE_DIR, f"emb_{hashlib.md5((s.dataset_tag+'|'+s.model_id+f'|{n}').encode()).hexdigest()[:10]}.npy")
def _load_or_build(s,docs):
p=s._cache_path(len(docs))
if os.path.exists(p):
embs=np.load(p,mmap_mode="r");
if embs.shape[0]==len(docs): return embs
embs=s.model.encode(docs, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=True)
np.save(p, embs); return np.load(p, mmap_mode="r")
def query_vec(s,text): return s.model.encode([text], convert_to_numpy=True, normalize_embeddings=True)[0]
EMB=EmbeddingBank(CATALOG["doc"].tolist(), EMBED_MODEL_ID, DATASET_ID)
# Token set for light lexical checks (used by interest Hit@k)
_tok_rx = re.compile(r"[a-z0-9][a-z0-9\-']*")
if "tok_set" not in CATALOG.columns:
CATALOG["tok_set"]=(CATALOG["name"].fillna("")+" "+CATALOG["tags"].fillna("")+" "+CATALOG["short_desc"].fillna("")).map(lambda t:set(_tok_rx.findall(str(t).lower())))
# Optional cross-encoder for re-ranking (small CPU-friendly model by default)
try:
from sentence_transformers import CrossEncoder
except:
CrossEncoder=None
RERANK_MODEL_ID=os.getenv("RERANK_MODEL_ID","cross-encoder/ms-marco-MiniLM-L-6-v2")
_CE_MODEL=None
def _load_cross_encoder():
global _CE_MODEL
if _CE_MODEL is None and CrossEncoder is not None:
_CE_MODEL=CrossEncoder(RERANK_MODEL_ID, device="cpu")
return _CE_MODEL
# Occasion-specific keyword priors (light bonus shaping)
OCCASION_PRIORS={"valentines":[("jewelry",.12),("chocolate",.10),("candle",.08),("romantic",.08),("couple",.08),("heart",.06)],
"birthday":[("fun",.06),("game",.06),("personalized",.06),("gift set",.05),("surprise",.04)],
"anniversary":[("couple",.10),("jewelry",.10),("photo",.08),("frame",.06),("memory",.06),("candle",.06)],
"graduation":[("journal",.10),("planner",.08),("office",.08),("coffee",.06),("motivation",.06)],
"housewarming":[("home",.10),("kitchen",.08),("decor",.10),("candle",.06),("serving",.06)],
"new_baby":[("baby",.12),("nursery",.10),("soft",.06),("blanket",.06)],
"retirement":[("relax",.08),("hobby",.08),("travel",.06),("book",.06)],
"holidays":[("holiday",.10),("winter",.08),("chocolate",.08),("cozy",.06),("family",.06)],
"promotion":[("desk",.10),("office",.10),("premium",.08),("organizer",.06)],
"get_well":[("cozy",.10),("tea",.08),("soothing",.06),("care",.06)]}
def expand_with_synonyms(tokens: List[str])->List[str]:
# Expand user-provided interests with synonyms to enrich the query
out=[];
for t in tokens:
t=t.strip().lower()
if t: out+=[t]+SYNONYMS.get(t,[])
return out
def profile_to_query(p:Dict)->str:
# Construct a dense query string from profile information
inter=[i.lower() for i in p.get("interests",[]) if i]; expanded=expand_with_synonyms(inter)*3
parts=[", ".join(expanded) if expanded else "", ", ".join(REL_TO_TOKENS.get(p.get("relationship","Friend"),[])), OCCASION_CANON.get(p.get("occ_ui","Birthday"),"birthday")]
tail=f"gift ideas for a {p.get('relationship','Friend')} for {parts[-1]}; likes {', '.join(inter) or 'general'}"
return " | ".join([x for x in parts if x])+" | "+tail
def _gender_ok_mask(g:str)->np.ndarray:
# Gender-aware filter: exclude items explicitly labeled for the opposite gender unless unisex
g=(g or "any").lower(); bl=CATALOG["blob"]
has_m=bl.str.contains(r"\b(men|man's|mens|male|for men)\b",regex=True,na=False)
has_f=bl.str.contains(r"\b(women|woman's|womens|female|for women|dress)\b",regex=True,na=False)
has_u=bl.str.contains(r"\bunisex|gender neutral\b",regex=True,na=False)
if g=="female": return (~has_m | has_u).to_numpy()
if g=="male": return (~has_f | has_u).to_numpy()
return np.ones(len(bl),bool)
def _mask_by_age(age:str, blob:pd.Series)->np.ndarray:
# Age-aware filter: crude regex to separate kids/teens/adults
kids=blob.str.contains(r"\b(?:kid|kids|child|children|toddler|baby|boys?|girls?|kid's|children's)\b",regex=True,na=False)
teen=blob.str.contains(r"\b(?:teen|teens|young adult|ya)\b",regex=True,na=False)
if age in ("adult","senior"): return (~kids).to_numpy()
if age=="teens": return ((~kids)|teen).to_numpy()
if age=="kids": return (kids | (~teen & kids)).to_numpy()
return np.ones(len(blob),bool)
def _interest_bonus(p:Dict, idx:np.ndarray)->np.ndarray:
# Soft bonus if catalog tokens overlap with interest vocabulary (synonyms included)
ints=[i.lower() for i in p.get("interests",[]) if i]; syns=[s for it in ints for s in SYNONYMS.get(it,[])]; vocab=set(ints+syns)
if not vocab or idx.size==0: return np.zeros(len(idx),"float32")
counts=np.array([len(CATALOG["tok_set"].iat[i] & vocab) for i in idx],"float32"); return .10*np.clip(counts,0,6)
def _occasion_bonus(idx:np.ndarray, occ_ui:str)->np.ndarray:
# Soft bonus based on occasion priors (keywords found in item blob)
pri=OCCASION_PRIORS.get(OCCASION_CANON.get(occ_ui or "Birthday","birthday"),[])
if not pri or idx.size==0: return np.zeros(len(idx),"float32")
bl=CATALOG["blob"].to_numpy(); out=np.zeros(len(idx),"float32")
for j,i in enumerate(idx):
bonus=sum(w for kw,w in pri if kw in bl[i]); out[j]=min(bonus,.15)
return out
def _minmax(x:np.ndarray)->np.ndarray:
# Normalize to [0,1] with safe guard for constant vectors
if x.size==0: return x
lo,hi=float(np.min(x)),float(np.max(x));
return np.zeros_like(x) if hi<=lo+1e-9 else (x-lo)/(hi-lo)
def _mmr_select(cand_idx:np.ndarray, scores:np.ndarray, k:int, lambda_:float=.7)->np.ndarray:
# MMR selection to maintain diversity in the final top-k
if cand_idx.size<=k: return cand_idx[np.argsort(-scores)][:k]
picked=[]; rest=list(range(len(cand_idx))); rel=_minmax(scores)
V=np.asarray(EMB.embs,"float32")[cand_idx]; V/=np.linalg.norm(V,axis=1,keepdims=True)+1e-8
while len(picked)<k and rest:
if not picked: picked.append(rest.pop(int(np.argmax(rel[rest])))); continue
sim_to_sel=np.array([float((V[c]@V[picked].T) if np.ndim(V[c]@V[picked].T)==0 else np.max(V[c]@V[picked].T)) for c in rest],"float32")
j=int(np.argmax(lambda_*rel[rest]-(1-lambda_)*sim_to_sel)); picked.append(rest.pop(j))
return cand_idx[np.array(picked,int)]
def recommend_top3_budget_first(
p: Dict,
include_synth: bool = True,
synth_n: int = 10,
widen_budget_frac: float = 0.5
) -> pd.DataFrame:
"""
Retrieve โ score โ diversify. Always returns semantically-ranked results
from the catalog (no โcheapest-3โ fallback). If strict filters empty the
pool, we progressively relax them but still rank by embeddings + bonuses.
Optionally appends a 4th 'Generated' item (DIY) when include_synth=True.
"""
# ---------- Filters (progressive relaxations) ----------
lo, hi = float(p.get("budget_min", 0)), float(p.get("budget_max", 1e9))
blob = CATALOG["blob"]
price = CATALOG["price_usd"].values
age_ok = _mask_by_age(p.get("age_range", "any"), blob)
gen_ok = _gender_ok_mask(p.get("gender", "any"))
price_ok_strict = (price >= lo) & (price <= hi)
price_ok_wide = (price >= max(0, lo * (1 - widen_budget_frac))) & \
(price <= (hi * (1 + widen_budget_frac) if hi < 1e8 else hi))
mask_chain = [
price_ok_strict & age_ok & gen_ok, # ืืื ืงืฉืื
price_ok_strict & gen_ok, # ืืื ืืื
price_ok_wide & gen_ok, # ืืจืืืช ืืืื ืชืงืฆืื
age_ok & gen_ok, # ืืื ืชืงืฆืื
gen_ok, # ืจืง ืืืืจ
np.ones(len(CATALOG), bool), # ืืื
]
idx = np.array([], dtype=int)
for m in mask_chain:
cand = np.where(m)[0]
if cand.size:
idx = cand
break
# ---------- Query & base similarities ----------
q = profile_to_query(p)
qv = EMB.query_vec(q).astype("float32")
embs = np.asarray(EMB.embs, "float32")
emb_sims = embs[idx] @ qv
# ---------- Bonuses (ืขืืืื ืืืืฉืืื ืขื ืืืืขืืืื ืฉื ืืืจื) ----------
target = (lo + hi) / 2.0 if hi > lo else hi
prices = CATALOG.iloc[idx]["price_usd"].to_numpy()
price_bonus = np.clip(.12 - np.abs(prices - target) / max(target, 1.0), 0, .12).astype("float32")
int_bonus = _interest_bonus(p, idx)
occ_bonus = _occasion_bonus(idx, p.get("occ_ui", "Birthday"))
# Pre-score ืขื ืืื ืืช ื-NaN/Inf
pre = np.nan_to_num(emb_sims + price_bonus + int_bonus + occ_bonus, nan=0.0, posinf=0.0, neginf=0.0)
# ---------- Local candidate pool ----------
K1 = max(1, min(48, idx.size))
try:
top_local = np.argpartition(-pre, K1 - 1)[:K1]
except Exception:
top_local = np.argsort(-pre)[:K1]
cand_idx = idx[top_local]
# ---------- Feature normalization ----------
emb_n = _minmax(np.nan_to_num(emb_sims[top_local], nan=0.0))
price_n = _minmax(np.nan_to_num(price_bonus[top_local],nan=0.0))
int_n = _minmax(np.nan_to_num(int_bonus[top_local], nan=0.0))
occ_n = _minmax(np.nan_to_num(occ_bonus[top_local], nan=0.0))
# ---------- Optional cross-encoder ----------
ce = _load_cross_encoder()
if ce is not None:
docs = CATALOG.loc[cand_idx, "doc"].tolist()
pairs = [(q, d) for d in docs]
k_ce = min(24, len(pairs))
tl = np.argpartition(-emb_n, k_ce - 1)[:k_ce]
ce_raw = np.array(ce.predict([pairs[i] for i in tl]), "float32")
ce_n = np.zeros_like(emb_n)
ce_n[tl] = _minmax(ce_raw)
else:
ce_n = np.zeros_like(emb_n)
# ---------- Final score ----------
final = np.nan_to_num(.56*emb_n + .26*ce_n + .10*int_n + .05*occ_n + .03*price_n, nan=0.0)
# ---------- Select top-3 with diversity ----------
k = int(min(3, cand_idx.size))
pick = _mmr_select(cand_idx, final, k=k) if k > 0 else np.array([], dtype=int)
if pick.size == 0:
pick = cand_idx[np.argsort(-final)[:min(3, cand_idx.size)]]
# ---------- Build result ----------
res = CATALOG.loc[pick].copy()
pos = {int(cand_idx[i]): i for i in range(len(cand_idx))}
res["similarity"] = [float(final[pos[int(i)]]) if int(i) in pos else np.nan for i in pick]
# ---------- Optional synthetic #4 ----------
if include_synth:
try:
synth = pick_best_synthetic(p, qv, generate_synthetic_candidates(p, n=int(max(1, synth_n))))
if synth is not None:
res = pd.concat(
[res, pd.DataFrame([synth])[["name","short_desc","price_usd","image_url","similarity"]]],
ignore_index=True
)
except Exception:
pass # ืื ืฉืืืจืื ืืช ื-UI ืื ื-DIY ื ืืฉื
return res[["name","short_desc","price_usd","image_url","similarity"]].reset_index(drop=True)
q=profile_to_query(p); qv=EMB.query_vec(q).astype("float32")
emb_sims=np.asarray(EMB.embs,"float32")[idx]@qv
target=(lo+hi)/2.0 if hi>lo else hi; prices=CATALOG.iloc[idx]["price_usd"].to_numpy()
# Small bonus for being close to the budget mid-point
price_bonus=np.clip(.12-np.abs(prices-target)/max(target,1.0),0,.12).astype("float32")
int_bonus=_interest_bonus(p,idx); occ_bonus=_occasion_bonus(idx,p.get("occ_ui","Birthday"))
pre=emb_sims+price_bonus+int_bonus+occ_bonus
# Keep a local candidate pool for cost/quality tradeoff
K1=min(48,idx.size); top_local=np.argpartition(-pre,K1-1)[:K1]; cand_idx=idx[top_local]
emb_n=_minmax(emb_sims[top_local]); price_n=_minmax(price_bonus[top_local]); int_n=_minmax(int_bonus[top_local]); occ_n=_minmax(occ_bonus[top_local])
ce=_load_cross_encoder();
if ce is not None:
# Optional cross-encoder re-ranking on a smaller slice
docs=CATALOG.loc[cand_idx,"doc"].tolist(); pairs=[(q,d) for d in docs]
k_ce=min(24,len(pairs)); tl=np.argpartition(-emb_n,k_ce-1)[:k_ce]; ce_raw=np.array(ce.predict([pairs[i] for i in tl]),"float32"); ce_n=np.zeros_like(emb_n); ce_n[tl]=_minmax(ce_raw)
else:
ce_n=np.zeros_like(emb_n)
# Final weighted score (tuned manually)
final=(.56*emb_n+.26*ce_n+.10*int_n+.05*occ_n+.03*price_n).astype("float32")
pick=_mmr_select(cand_idx,final,k=min(3,cand_idx.size))
res=CATALOG.loc[pick].copy(); pos={int(cand_idx[i]):i for i in range(len(cand_idx))}; res["similarity"]=[float(final[pos[int(i)]]) for i in pick]
# === NEW: synthetic #4 ===
synth = pick_best_synthetic(p, qv, generate_synthetic_candidates(p, n=10))
if synth is not None:
res = pd.concat(
[res, pd.DataFrame([synth])[["name","short_desc","price_usd","image_url","similarity"]]],
ignore_index=True
)
return res[["name","short_desc","price_usd","image_url","similarity"]].reset_index(drop=True)
# ===== DIY (FLAN-only) =====
DIY_MODEL_ID=os.getenv("DIY_MODEL_ID","google/flan-t5-small"); DIY_DEVICE=torch.device("cpu")
MAX_INPUT_TOKENS=int(os.getenv("MAX_INPUT_TOKENS","384")); DIY_MAX_NEW_TOKENS=int(os.getenv("DIY_MAX_NEW_TOKENS","120"))
# Light aliases to seed the DIY gift title with an interest token
INTEREST_ALIASES={"Reading":["book","novel","literary"],"Fashion":["style","chic","silk"],"Home decor":["candle","wall","jar"],"Technology":["tech","gadget","usb"],"Movies":["film","cinema","poster"]}
FALLBACK_NOUNS=["Kit","Set","Bundle","Box","Pack"]
_diy_cache_model={}
def _load_flan(mid:str):
# Lazy-load and cache FLAN-T5 on CPU
if mid in _diy_cache_model: return _diy_cache_model[mid]
tok=AutoTokenizer.from_pretrained(mid, use_fast=True, trust_remote_code=True)
mdl=AutoModelForSeq2SeqLM.from_pretrained(mid, trust_remote_code=True, use_safetensors=True).to(DIY_DEVICE).eval()
_diy_cache_model[mid]=(tok,mdl); return _diy_cache_model[mid]
@torch.inference_mode()
def _gen(tok, mdl, prompt, max_new_tokens=64, do_sample=False, temperature=.9, top_p=.95, seed=None):
# Small wrapper for deterministic/non-deterministic generation
if seed is None: seed=random.randint(1,10_000_000)
random.seed(seed); torch.manual_seed(seed)
enc=tok(prompt, truncation=True, max_length=MAX_INPUT_TOKENS, return_tensors="pt"); enc={k:v.to(DIY_DEVICE) for k,v in enc.items()}
out=mdl.generate(**enc, max_new_tokens=max_new_tokens, eos_token_id=tok.eos_token_id, pad_token_id=tok.eos_token_id, **({"do_sample":True,"temperature":temperature,"top_p":top_p} if do_sample else {"do_sample":False,"num_beams":1}))
return tok.decode(out[0], skip_special_tokens=True).strip()
def _choose_interest_token(interests):
# Pick a representative token to inject into the DIY name
for it in interests:
if INTEREST_ALIASES.get(it): return random.choice(INTEREST_ALIASES[it])
return (interests[0].split()[0].lower() if interests else "gift")
def _title_case(s): s=re.sub(r'\s+',' ',s).strip(); s=re.sub(r'["โโโโ]+','',s); return " ".join([w.capitalize() for w in s.split()])
def _sanitize_name(name, interests):
# Clean LLM-proposed name and enforce a short, interest-infused title
for b in [r"^the name\b",r"\bmember of the family\b",r"^name\b",r"^title\b"]: name=re.sub(b,"",name,flags=re.I).strip()
name=re.sub(r'[:\-โโ]+$',"",name).strip(); alias=_choose_interest_token(interests)
if alias not in name.lower():
tokens=[t for t in re.split(r"[\s\-]+",name) if t]
name=(f"{alias.capitalize()} "+(" ".join([t.capitalize() for t in tokens]) if tokens else random.choice(FALLBACK_NOUNS))) if len(tokens)<4 else " ".join([tokens[0],alias.capitalize(),*tokens[1:]])
name=re.sub(r'\b(Home Decor:?\s*){2,}','Home Decor ',name,flags=re.I); name=_title_case(name)[:80]
if len(name.split())<3: name=f"{alias.capitalize()} {random.choice(FALLBACK_NOUNS)}"
return name
def _split_list_text(s,seps):
# Parse list-like text returned by LLM into clean items (fallback across separators)
s=s.strip()
for sep in seps:
if sep in s:
parts=[p.strip(" -โข*.,;:") for p in s.split(sep) if p.strip(" -โข*.,;:")]
if len(parts)>=2: return parts
return [p.strip(" -โข*.,;:") for p in re.split(r"[\n\r;]+", s) if p.strip(" -โข*.,;:")]
def _coerce_materials(items):
# Normalize materials list: dedupe, keep short, ensure quantities, pad with basics
out=[]
for it in items:
it=re.sub(r'\s+',' ',it).strip(" -โข*.,;:");
if not it: continue
it=re.sub(r'(\b\w+\b)(?:\s+\1){2,}',r'\1',it,flags=re.I)
if len(it)>60: it=it[:58]+"โฆ"
if not re.search(r"\d",it): it+=" x1"
if it.lower() not in [x.lower() for x in out]: out.append(it)
if len(out)>=8: break
base=["Small gift box x1","Decorative paper x2","Twine 2 m","Cardstock sheets x2","Double-sided tape x1","Stickers x8","Ribbon 1 m","Fine-tip marker x1"]
for b in base:
if len(out)>=6: break
if b.lower() not in [x.lower() for x in out]: out.append(b)
return out[:8]
def _coerce_steps(items):
# Normalize step list: trim, remove numbering, enforce sentence case, pad to 6+
out=[]
for it in items:
it=it.strip(" -โข*.,;:");
if not it: continue
it=re.sub(r'\s+',' ',it);
if len(it)>120: it=it[:118]+"โฆ"
it=re.sub(r'^(?:\d+[\).\s-]*)','',it); it=it[0].upper()+it[1:] if it else it; out.append(it)
if len(out)>=8: break
while len(out)<6: out.append(f"Refine and decorate step {len(out)+1}")
return out[:8]
def _only_int(s): m=re.search(r"-?\d+",s); return int(m.group()) if m else None
def _clamp_num(v,lo,hi,default):
# Clamp numeric values into a valid range; fallback to default or midpoint
try: x=float(v); return int(min(max(x,lo),hi))
except: return int((lo+hi)/2 if default is None else default)
def diy_generate(profile:Dict)->Tuple[dict,str]:
# Generate a DIY gift object (name, overview, materials, steps, cost, time)
tok,mdl=_load_flan(DIY_MODEL_ID)
p={"recipient_name":profile.get("recipient_name","Recipient"),"relationship":profile.get("relationship","Friend"),
"occ_ui":profile.get("occ_ui","Birthday"),"occasion":profile.get("occ_ui","Birthday"),"interests":profile.get("interests",[]),
"budget_min":int(float(profile.get("budget_min",10))),"budget_max":int(float(profile.get("budget_max",100))),
"age_range":profile.get("age_range","any"),"gender":profile.get("gender","any")}
lang="English"; ints_str=", ".join(p["interests"]) or "general"
prompt_name=(f"Return ONLY a DIY gift NAME in Title Case (4โ8 words). Must include at least one interest token from: "
f"{', '.join(sum(([it]+INTEREST_ALIASES.get(it,[]) for it in p['interests']), [])) or 'gift'}. "
f"Occasion: {p['occ_ui']}. Relationship: {p['relationship']}. Language: {lang}. Forbidden: the words 'name','title','family'. "
"No quotes, no trailing punctuation.\nExamples:\nReading โ Literary Candle Bookmark Kit\nTechnology โ Gadget Cable Organizer Set\nHome decor โ Rustic Jar Candle Bundle\nOutput:")
name=_sanitize_name(_gen(tok,mdl,prompt_name, max_new_tokens=24, do_sample=False), p["interests"])
overview=_gen(tok,mdl,(f"Write EXACTLY 2 sentences in {lang} for a handmade gift called '{name}'. Mention {p['recipient_name']} "
f"({p['relationship']}) and the occasion ({p['occ_ui']}). Explain how it reflects the interests: {ints_str}. "
"No lists, no emojis. Output only the two sentences."), max_new_tokens=80, do_sample=True, temperature=.9, top_p=.95)
materials=_split_list_text(_gen(tok,mdl,(f"List 6 concise materials with quantities to make '{name}' cheaply. Keep total within "
f"{p['budget_min']}-{p['budget_max']} USD. Output ONLY a comma-separated list."), max_new_tokens=96, do_sample=False), [",",";"])
steps=_split_list_text(_gen(tok,mdl,(f"Write 6 short imperative steps to make '{name}'. Output ONLY a semicolon-separated list."), max_new_tokens=120, do_sample=True, temperature=.9, top_p=.95), [";","\n"])
cost=_only_int(_gen(tok,mdl,(f"Return ONE integer total cost in USD between {p['budget_min']}-{p['budget_max']}. Output NUMBER only."), max_new_tokens=6, do_sample=False))
minutes=_only_int(_gen(tok,mdl,"Return ONE integer minutes between 20 and 180. Output NUMBER only.", max_new_tokens=6, do_sample=False))
idea={"gift_name":name,"overview":overview,"materials_needed":_coerce_materials(materials),"steps":_coerce_steps(steps),
"estimated_cost_usd":_clamp_num(cost,p["budget_min"],p["budget_max"],None),"estimated_time_minutes":_clamp_num(minutes,20,180,60)}
return idea,"ok"
def generate_synthetic_candidates(profile, n=10):
# Use FLAN-based DIY generator to create N lightweight candidates (name/overview/price)
cands = []
lo, hi = int(float(profile.get("budget_min", 10))), int(float(profile.get("budget_max", 100)))
for _ in range(n):
idea, _ = diy_generate(profile) # Already returns name/overview/estimated_cost
price = int(idea.get("estimated_cost_usd") or random.randint(lo, hi))
name = idea.get("gift_name", "Custom DIY Gift")[:160]
desc = (idea.get("overview", "") or "").strip()[:300]
doc = f"{name} | custom | {desc}".lower()
cands.append({"name": name, "short_desc": desc, "price_usd": price, "image_url": "", "doc": doc})
return cands
def pick_best_synthetic(profile, qv, candidates):
# Embed synthetic candidates and pick the one most similar to the query vector
if not candidates: return None
docs = [c["doc"] for c in candidates]
vecs = EMB.model.encode(docs, convert_to_numpy=True, normalize_embeddings=True)
sims = vecs @ qv
j = int(np.argmax(sims))
best = candidates[j].copy()
best["similarity"] = float(sims[j])
return best
# --------------------- Personalized Message (FLAN + validation) ---------------------
# Implementation ported from the Colab; tone-specific constraints + simple checks.
MSG_MODEL_ID = "google/flan-t5-small"
MSG_DEVICE = "cpu"
TEMP_RANGE = (0.88, 1.10)
TOPP_RANGE = (0.90, 0.96)
REP_PENALTY = 1.12
MSG_MAX_NEW_TOKENS = 90
MSG_MAX_TRIES = 4
_last_msg: Optional[str] = None
_msg_tok, _msg_mdl = None, None
TONE_STYLES: Dict[str, Dict[str, List[str]]] = {
"Formal": {
"system": "Write 2โ3 refined sentences with professional courtesy and clarity.",
"rules": [
"You may begin with 'Dear {name},' but keep it concise.",
"Use precise vocabulary; avoid colloquialisms.",
"Conclude with a dignified line."
],
},
"Casual": {
"system": "Write 2โ3 relaxed sentences with natural, friendly language.",
"rules": [
"Keep it light and conversational.",
"Reference one concrete interest detail.",
"End upbeat without clichรฉs."
],
},
"Funny": {
"system": "Write 2โ3 witty sentences with playful humor.",
"rules": [
"Add one subtle pun linked to the occasion or interests.",
"No slapstick; keep it tasteful.",
"End with a cheeky nudge."
],
},
"Heartfelt": {
"system": "Write 2โ3 warm, sincere sentences with genuine sentiment.",
"rules": [
"Open with an image or specific detail; avoid templates.",
"Let one verb carry the energy; minimal adjectives.",
"Close with a crisp, personal wish."
],
},
"Inspirational": {
"system": "Write 2โ3 uplifting sentences with forward-looking energy.",
"rules": [
"Honor a trait or effort implied by the interests.",
"Use a subtle metaphor; avoid grandiose platitudes.",
"Finish with a compact, future-facing line."
],
},
"Playful": {
"system": "Write 2โ3 lively sentences with bounce and rhythm.",
"rules": [
"Sneak a gentle internal rhyme or alliteration.",
"Keep syntax varied and musical.",
"Land on a spirited close."
],
},
"Romantic": {
"system": "Write 2โ3 intimate sentences, warm and elegant.",
"rules": [
"Reference a shared moment or interest; keep it subtle.",
"No clichรฉs or over-sweet phrasing.",
"End with a soft, affectionate note."
],
},
"Appreciative": {
"system": "Write 2โ3 sentences that express genuine appreciation.",
"rules": [
"Name a specific quality or habit tied to the interests.",
"Avoid business thank-you clichรฉs.",
"Close with concise gratitude."
],
},
"Encouraging": {
"system": "Write 2โ3 supportive sentences that motivate gently.",
"rules": [
"Acknowledge progress or perseverance (hinted by interests).",
"Offer one practical, hopeful sentiment.",
"Finish with a compact encouragement."
],
},
}
BAN_PHRASES = [
]
OPENERS = [
"Hereโs to a moment that fits you perfectly:",
"A note made just for you:",
"Because you make celebrations easy to love:",
"For a day that sounds like you:",
]
CLOSERS = [
"Enjoy every bitโyouโve earned it.",
"Keep doing the things that light you up.",
"Hereโs to more of what makes you, you.",
"Let this be a spark for the year ahead.",
]
def _msg_load():
# Lazy-load FLAN for message generation (CPU)
global _msg_tok, _msg_mdl
if _msg_tok is None or _msg_mdl is None:
_msg_tok = AutoTokenizer.from_pretrained(MSG_MODEL_ID)
_msg_mdl = AutoModelForSeq2SeqLM.from_pretrained(MSG_MODEL_ID)
_msg_mdl.to(MSG_DEVICE).eval()
return _msg_tok, _msg_mdl
def _norm(s: str) -> str:
# Collapse whitespace for more reliable validators
return re.sub(r"\s+", " ", s or "").strip()
def _sentences_n(s: str) -> int:
# Count sentences via punctuation boundaries
return len([p for p in re.split(r"(?<=[.!?])\s+", s.strip()) if p])
def _contains_any(text: str, terms: List[str]) -> bool:
# Case-insensitive containment check for any of the given terms
t = text.lower()
return any(term for term in terms if term) and any((term or "").lower() in t for term in terms)
def _too_similar(a: str, b: str, n=3, thr=0.85) -> bool:
# Approximate de-duplication via n-gram Jaccard similarity
def ngrams(txt):
toks = re.findall(r"[a-zA-Z']+", txt.lower())
return set(tuple(toks[i:i+n]) for i in range(max(0, len(toks)-n+1)))
A, B = ngrams(a), ngrams(b)
if not A or not B: return False
j = len(A & B) / max(1, len(A | B))
return j >= thr
def _clean_occasion(occ: str) -> str:
# Normalize typographic apostrophes to ASCII and trim
return (occ or "").replace("โ","'").strip()
def _build_prompt(profile: Dict[str, Any]) -> Tuple[str, Dict[str,str]]:
# Compose a guided prompt (tone + micro-rules) for the message LLM
name = profile.get("recipient_name", "Friend")
rel = profile.get("relationship", "Friend")
occ = _clean_occasion(profile.get("occ_ui") or profile.get("occasion") or "Birthday")
tone = profile.get("tone", "Heartfelt")
ints = ", ".join(profile.get("interests", [])) or "general interests"
style = TONE_STYLES.get(tone, TONE_STYLES["Heartfelt"])
opener = random.choice(OPENERS)
closer = random.choice(CLOSERS)
spice = random.choice([
"Use one concrete visual detail.",
"Shift the rhythm slightly in the second sentence.",
"Let one verb carry most of the energy; keep adjectives minimal.",
"Add a gentle internal rhyme."
])
lines = [
"Generate a short gift-card message in English (2โ3 sentences).",
f"Recipient: {name} ({rel}). Occasion: {occ}. Interests: {ints}. Tone: {tone}.",
style["system"],
"Rules:",
*[f"- {r}" for r in style["rules"]],
"- No emojis. No bullet points.",
f"- Start with: \"{opener}\" (continue naturally, not as a header).",
f"- End with a natural line similar to: \"{closer}\" (rephrase; do not quote).",
f"- {spice}",
"Output only the message; no extra commentary.",
]
return "\n".join(lines), dict(name=name, occ=occ)
@torch.inference_mode()
def generate_personal_message(profile: Dict[str, Any], seed: Optional[int]=None, previous_message: Optional[str]=None) -> Dict[str, Any]:
# Sample multiple generations with slight sampling variance, validate, and return best
global _last_msg
tok, mdl = _msg_load()
if seed is None:
seed = random.randint(1, 10_000_000)
tried = []
for attempt in range(1, MSG_MAX_TRIES+1):
random.seed(seed); torch.manual_seed(seed)
prompt, need = _build_prompt(profile)
temp = random.uniform(*TEMP_RANGE)
topp = random.uniform(*TOPP_RANGE)
enc = tok(prompt, truncation=True, max_length=512, return_tensors="pt").to(MSG_DEVICE)
out_ids = mdl.generate(
**enc,
do_sample=True,
temperature=temp,
top_p=topp,
max_new_tokens=MSG_MAX_NEW_TOKENS,
repetition_penalty=REP_PENALTY,
pad_token_id=tok.eos_token_id,
eos_token_id=tok.eos_token_id,
)
text = _norm(tok.decode(out_ids[0], skip_special_tokens=True))
# ===== Validators (mirrors the Colab logic) =====
ok_len = 1 <= _sentences_n(text) <= 3
name_ok = _contains_any(text, [need["name"].lower()])
occ_ok = _contains_any(text, [need["occ"].lower(), need["occ"].split()[0].lower()])
ban_ok = not _contains_any(text, BAN_PHRASES)
prev = previous_message or _last_msg
dup_ok = (prev is None) or (not _too_similar(text, prev, n=3, thr=0.85))
if all([ok_len, name_ok, occ_ok, ban_ok, dup_ok]):
_last_msg = text
return {"message": text, "meta": {"tone": profile.get("tone","Heartfelt"),
"temperature": round(temp,2), "top_p": round(topp,2),
"seed": seed, "attempt": attempt, "model": MSG_MODEL_ID}}
tried.append({"text": text}); seed += 17
# Fallback if all attempts failed validation
fallback = tried[-1]["text"] if tried else f"Happy {(_clean_occasion(profile.get('occ_ui') or 'day')).lower()}, {profile.get('recipient_name','Friend')}!"
_last_msg = fallback
return {"message": fallback, "meta": {"failed": True, "model": MSG_MODEL_ID, "tone": profile.get("tone","Heartfelt")}}
# --------------------- END Personalized Message ---------------------
# ===== Rendering & UI =====
def first_sentence(s,max_chars=140):
# Extract the first sentence or truncate; keeps the HTML cards compact
s=(s or "").strip();
if not s: return ""
cut=s.split(". ")[0];
return cut if len(cut)<=max_chars else cut[:max_chars-1]+"โฆ"
def render_top3_html(df, age_label):
# Render the 3 catalog picks plus the optional 4th "Generated" item
if df is None or df.empty: return "<em>No results found within the current filters.</em>"
rows=[]
for i, r in df.iterrows():
name=str(r.get("name","")).replace("|","\\|").replace("*","\\*").replace("_","\\_")
desc=str(first_sentence(r.get("short_desc",""))).replace("|","\\|").replace("*","\\*").replace("_","\\_")
price=r.get("price_usd"); sim=r.get("similarity"); img=r.get("image_url","") or ""
price_str=f"${price:.0f}" if pd.notna(price) else "N/A"; sim_str=f"{sim:.3f}" if pd.notna(sim) else "โ"
img_html=f'<img src="{img}" alt="" style="width:84px;height:84px;object-fit:cover;border-radius:10px;margin-left:12px;" />' if img else ""
tag = "Generated" if i==3 else f"#{i+1}"
rows.append(f"""
<div style="display:flex;align-items:flex-start;justify-content:space-between;gap:10px;padding:10px;border:1px solid #eee;border-radius:12px;margin-bottom:8px;background:#fff;">
<div style="flex:1;min-width:0;"><div style="font-weight:700;">{name} <span style="font-size:.8em;opacity:.7;">({tag})</span></div>
<div style="font-size:0.95em;margin-top:4px;">{desc}</div>
<div style="font-size:0.9em;margin-top:6px;opacity:0.8;">Price: <b>{price_str}</b> ยท Age: <code>{age_label}</code> ยท Score: <code>{sim_str}</code></div>
</div>{img_html}
</div>""")
return "\n".join(rows)
with gr.Blocks(title="๐ GIfty โ Recommender + DIY", css="""
#explain{opacity:.85;font-size:.92em;margin-bottom:8px;}
.gr-dataframe thead{display:none;}
.gr-dataframe table{border-collapse:separate!important;border-spacing:0 10px!important;table-layout:fixed;width:100%;}
.gr-dataframe tbody tr{cursor:pointer;display:block;background:linear-gradient(180deg,#fff,#fafafa);border-radius:14px;border:1px solid #e9eef5;box-shadow:0 1px 1px rgba(16,24,40,.04),0 1px 2px rgba(16,24,40,.06);padding:10px 12px;transition:transform .06s ease, box-shadow .12s ease, background .12s ease;}
.gr-dataframe tbody tr:hover{transform:translateY(-1px);background:#f8fafc;box-shadow:0 3px 10px rgba(16,24,40,.08);}
.gr-dataframe tbody tr td{border:0!important;padding:4px 8px!important;vertical-align:middle;font-size:.92rem;line-height:1.3;}
.gr-dataframe tbody tr td:nth-child(1){font-weight:700;font-size:1rem;letter-spacing:.2px;}
.gr-dataframe tbody tr td:nth-child(2),.gr-dataframe tbody tr td:nth-child(4){opacity:.8;}
.gr-dataframe tbody tr td:nth-child(3),.gr-dataframe tbody tr td:nth-child(9),.gr-dataframe tbody tr td:nth-child(6),.gr-dataframe tbody tr td:nth-child(5){display:inline-block;background:#eff4ff;color:#243b6b;border:1px solid #dbe5ff;border-radius:999px;padding:2px 10px!important;font-size:.84rem;margin:2px 6px 2px 0;}
.gr-dataframe tbody tr td:nth-child(7),.gr-dataframe tbody tr td:nth-child(8){display:inline-block;background:#f1f5f9;border:1px solid #e2e8f0;color:#0f172a;border-radius:10px;padding:2px 8px!important;font-variant-numeric:tabular-nums;margin:2px 6px 2px 0;}
.handsontable .wtBorder,.handsontable .htBorders,.handsontable .wtBorder.current{display:none!important;}
.gr-dataframe table td:focus{outline:none!important;box-shadow:none!important;}
""") as demo:
gr.Markdown(TITLE)
gr.Markdown("### Quick examples (click a row to auto-fill)", elem_id="explain")
EXAMPLES=[(["Technology","Movies"],"Birthday",25,45,"Daniel","Friend","adult (18โ64)","male","Funny"),
(["Art","Reading","Home decor"],"Anniversary",30,60,"Rotem","Romantic partner","adult (18โ64)","female","Romantic"),
(["Gaming","Photography"],"Birthday",30,120,"Omer","Family - Sibling","teen (13โ17)","male","Playful"),
(["Reading","Art"],"Graduation",15,35,"Maya","Friend","adult (18โ64)","female","Heartfelt"),
(["Science","Crafts"],"Holidays",15,30,"Adam","Family - Child","kid (3โ12)","male","Encouraging")]
EX_COLS=["Recipient","Relationship","Interests","Occasion","Age group","Gender","Min $","Max $","Tone"]
EX_DF=pd.DataFrame([[name,rel," + ".join(interests),occ,age,gender,bmin,bmax,tone] for (interests,occ,bmin,bmax,name,rel,age,gender,tone) in EXAMPLES], columns=EX_COLS)
ex_df=gr.Dataframe(value=EX_DF, interactive=False, wrap=True); gr.Markdown("---")
with gr.Row():
recipient_name=gr.Textbox(label="Recipient name", value="Daniel")
relationship=gr.Dropdown(label="Relationship", choices=RECIPIENT_RELATIONSHIPS, value="Friend")
with gr.Row():
occasion=gr.Dropdown(label="Occasion", choices=OCCASION_UI, value="Birthday")
age=gr.Dropdown(label="Age group", choices=list(AGE_OPTIONS.keys()), value="adult (18โ64)")
gender=gr.Dropdown(label="Recipient gender", choices=GENDER_OPTIONS, value="male")
interests=gr.CheckboxGroup(label="Interests (select a few)", choices=INTEREST_OPTIONS, value=["Technology","Movies"], interactive=True)
with gr.Row():
budget_min=gr.Slider(label="Min budget (USD)", minimum=5, maximum=500, step=1, value=25)
budget_max=gr.Slider(label="Max budget (USD)", minimum=5, maximum=500, step=1, value=45)
tone=gr.Dropdown(label="Message tone", choices=MESSAGE_TONES, value="Funny")
go=gr.Button("Get GIfty!")
gr.Markdown("### ๐ Input summary"); out_summary = gr.HTML(visible=False)
gr.Markdown("### ๐ฏ Recommendations"); out_top3=gr.HTML()
gr.Markdown("### ๐ ๏ธ DIY Gift"); out_diy_md=gr.Markdown()
gr.Markdown("### ๐ Personalized Message"); out_msg=gr.Markdown()
run_token=gr.State(0)
def _on_example_select(evt: gr.SelectData):
# Clicking a row fills the input widgets with that example
r=int(evt.index[0] if isinstance(evt.index,(list,tuple)) else evt.index); row=EX_DF.iloc[r]; ints=[s.strip() for s in str(row["Interests"]).split("+")]
return (ints,row["Occasion"],int(row["Min $"]),int(row["Max $"]),row["Recipient"],row["Relationship"],row["Age group"],row["Gender"],row["Tone"])
ex_df.select(_on_example_select, outputs=[interests, occasion, budget_min, budget_max, recipient_name, relationship, age, gender, tone])
def render_diy_md(j:dict)->str:
# Nicely format the DIY object as markdown
if not j: return "_DIY generation failed._"
steps=j.get('step_by_step_instructions', j.get('steps', []))
parts = [
f"**{j.get('gift_name','(no name)')}**","",
j.get('overview','').strip(),"",
"**Materials**","\n".join(f"- {m}" for m in j.get('materials_needed',[])),"",
"**Steps**","\n".join(f"{i+1}. {s}" for i,s in enumerate(steps)),"",
f"**Estimated cost:** ${j.get('estimated_cost_usd','?')} ยท **Time:** {j.get('estimated_time_minutes','?')} min"
]
return "\n".join(parts)
def input_summary_html(p, age_label):
# Render a compact summary of the current input above the results
ints = ", ".join(p.get("interests", [])) or "โ"
budget = f"${int(float(p.get('budget_min',0)))}โ${int(float(p.get('budget_max',0)))}"
name = p.get("recipient_name","Friend"); rel = p.get("relationship","Friend")
occ = p.get("occ_ui", "Birthday"); gender = (p.get("gender","any") or "any").capitalize()
return f"""
<div style="padding:10px 12px;border:1px solid #e2e8f0;border-radius:12px;background:#f8fafc;margin-bottom:8px;">
<div style="display:flex;flex-wrap:wrap;gap:10px;align-items:center;">
<div><b>Recipient:</b> {name} ({rel})</div>
<div><b>Occasion:</b> {occ}</div>
<div><b>Age:</b> {age_label}</div>
<div><b>Gender:</b> {gender}</div>
<div><b>Budget:</b> {budget}</div>
<div style="flex-basis:100%;height:0;"></div>
<div><b>Interests:</b> {ints}</div>
</div>
</div>
"""
def _build_profile(ints, occ, bmin, bmax, name, rel, age_label, gender_val, tone_val):
# Convert UI widget values into an internal profile dict
try: bmin=float(bmin); bmax=float(bmax)
except: bmin,bmax=5.0,500.0
if bmin>bmax: bmin,bmax=bmax,bmin
return {"recipient_name":name or "Friend","relationship":rel or "Friend","interests":ints or [],"occ_ui":occ or "Birthday","budget_min":bmin,"budget_max":bmax,"age_range":AGE_OPTIONS.get(age_label,"any"),"gender":(gender_val or "any").lower(),"tone":tone_val or "Heartfelt"}
def start_run(curr):
# Simple monotonic counter to tie together chained events
return int(curr or 0) + 1
def predict_summary_only(rt, *args):
# args mapping:
# 0: interests, 1: occasion, 2: budget_min, 3: budget_max,
# 4: recipient_name, 5: relationship, 6: age_label, 7: gender, 8: tone
p = _build_profile(*args)
return gr.update(value=input_summary_html(p, args[6]), visible=True), rt
def predict_recs_only(rt, *args):
p = _build_profile(*args)
top3 = recommend_top3_budget_first(p, include_synth=False) # ืืืืจ
return gr.update(value=render_top3_html(top3, args[6]), visible=True), rt
def predict_recs_with_synth(rt, *args):
p = _build_profile(*args)
synth_n = int(os.getenv("SYNTH_N", "2"))
df = recommend_top3_budget_first(p, include_synth=True, synth_n=synth_n)
return gr.update(value=render_top3_html(df, args[6]), visible=True), rt
def predict_diy_only(rt, *args):
p = _build_profile(*args)
diy_json, _ = diy_generate(p)
return gr.update(value=render_diy_md(diy_json), visible=True), rt
def predict_msg_only(rt, *args):
p = _build_profile(*args)
msg_obj = generate_personal_message(p)
return gr.update(value=msg_obj["message"], visible=True), rt
ev_start = go.click(start_run, inputs=[run_token], outputs=[run_token], queue=True)
# 1) ืกืืืื ืงืื (ืืืืื)
ev_start.then(
predict_summary_only,
inputs=[run_token, interests, occasion, budget_min, budget_max, recipient_name, relationship, age, gender, tone],
outputs=[out_summary, run_token],
queue=True,
)
# 2) ืืืืฆืืช ืืืืจืืช (Top-3 ืืื ืกืื ืชืื)
recs_fast = ev_start.then(
predict_recs_only,
inputs=[run_token, interests, occasion, budget_min, budget_max, recipient_name, relationship, age, gender, tone],
outputs=[out_top3, run_token],
queue=True,
)
# 3) ืืืฉืื ืกืื ืชืื ืืฉืื ืืืฉื โ ืืจืขื ื ืืช ืืืชื out_top3 ืืฉืืืื
recs_fast.then(
predict_recs_with_synth,
inputs=[run_token, interests, occasion, budget_min, budget_max, recipient_name, relationship, age, gender, tone],
outputs=[out_top3, run_token],
queue=True,
)
# 4) DIY ืึพMessage ืืืืืื ืืจืืฅ ืืืงืืื ืึพ(3)
ev_start.then(
predict_diy_only,
inputs=[run_token, interests, occasion, budget_min, budget_max, recipient_name, relationship, age, gender, tone],
outputs=[out_diy_md, run_token],
queue=True,
)
ev_start.then(
predict_msg_only,
inputs=[run_token, interests, occasion, budget_min, budget_max, recipient_name, relationship, age, gender, tone],
outputs=[out_msg, run_token],
queue=True,
)
if __name__=="__main__":
demo.launch()
|