File size: 15,465 Bytes
64b2f09
e1a3b1d
 
 
 
d6fa84d
 
64b2f09
c9f825a
e1a3b1d
 
64b2f09
 
 
e1a3b1d
 
 
64b2f09
e1a3b1d
 
 
64b2f09
c9f825a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a3b1d
 
c9f825a
 
e1a3b1d
 
 
 
 
 
 
64b2f09
c9f825a
 
 
 
 
 
d30a052
 
e1a3b1d
c9f825a
64b2f09
e1a3b1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b2f09
 
 
 
 
 
 
 
d30a052
64b2f09
e1a3b1d
64b2f09
 
 
e1a3b1d
 
 
64b2f09
 
e1a3b1d
 
 
64b2f09
 
 
 
c9f825a
 
 
 
 
 
64b2f09
 
 
 
 
 
 
 
e1a3b1d
c9f825a
 
 
 
 
 
 
 
 
 
 
 
64b2f09
 
 
 
 
 
 
e1a3b1d
c9f825a
 
 
 
 
 
 
64b2f09
 
 
 
 
 
c9f825a
 
 
64b2f09
 
e1a3b1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b2f09
e1a3b1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b2f09
 
c9f825a
 
 
 
64b2f09
e1a3b1d
 
 
64b2f09
e1a3b1d
d6fa84d
 
d30a052
d6fa84d
d30a052
 
64b2f09
d6fa84d
d30a052
 
 
 
e1a3b1d
 
 
d30a052
e1a3b1d
 
 
c9f825a
 
e1a3b1d
64b2f09
 
e1a3b1d
 
 
 
c9f825a
64b2f09
c9f825a
 
64b2f09
c9f825a
 
64b2f09
c9f825a
 
 
 
 
 
 
 
e1a3b1d
64b2f09
c9f825a
 
 
64b2f09
 
c9f825a
64b2f09
 
 
c9f825a
 
 
 
 
 
 
64b2f09
e1a3b1d
64b2f09
d6fa84d
 
 
 
64b2f09
 
e1a3b1d
 
 
 
 
 
d6fa84d
 
c9f825a
d6fa84d
 
 
d30a052
c9f825a
 
d30a052
c9f825a
 
 
 
d6fa84d
 
 
c9f825a
 
 
 
e1a3b1d
c9f825a
 
 
e1a3b1d
 
c9f825a
 
 
64b2f09
 
e1a3b1d
64b2f09
 
c9f825a
e1a3b1d
 
 
 
c9f825a
64b2f09
c9f825a
 
e1a3b1d
d30a052
d6fa84d
 
 
 
d30a052
64b2f09
 
 
 
c9f825a
64b2f09
e1a3b1d
 
64b2f09
c9f825a
 
d6fa84d
c9f825a
 
 
 
 
d6fa84d
c9f825a
 
64b2f09
 
6966c21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# app.py
# 🎁 GIfty β€” Smart Gift Recommender (Embeddings + FAISS)
# Dataset: ckandemir/amazon-products (Hugging Face)
# UI: Gradio (English)
#
# Requirements (see requirements.txt):
# gradio, datasets, pandas, numpy, sentence-transformers, faiss-cpu, tabulate

import os, re, random
from typing import Dict, List, Tuple

import numpy as np
import pandas as pd
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import faiss

# ========================= Config =========================
MAX_ROWS = int(os.getenv("MAX_ROWS", "10000"))  # cap for speed
TITLE = "# 🎁 GIfty β€” Smart Gift Recommender\n*Top-3 similar picks + 1 generated idea + personalized message*"

OCCASION_OPTIONS = [
    "birthday", "anniversary", "valentines", "graduation",
    "housewarming", "christmas", "hanukkah", "thank_you",
]

AGE_OPTIONS = {
    "any": "any",
    "kid (3–12)": "kids",
    "teen (13–17)": "teens",
    "adult (18–64)": "adult",
    "senior (65+)": "senior",
}

INTEREST_OPTIONS = [
    "reading","writing","tech","travel","fitness","cooking","tea","coffee",
    "games","movies","plants","music","design","stationery","home","experience",
    "digital","aesthetic","premium","eco","practical","minimalist","social","party",
    "photography","outdoors","pets","beauty","jewelry"
]

MODEL_CHOICES = {
    "MiniLM (384d)": "sentence-transformers/all-MiniLM-L6-v2",
    "MPNet (768d)": "sentence-transformers/all-mpnet-base-v2",
    "E5-base (768d)": "intfloat/e5-base-v2",
}

# ========================= Data loading & schema =========================
def _to_price_usd(x):
    s = str(x).strip().replace("$","").replace(",","")
    try: return float(s)
    except: return np.nan

def _infer_age_from_category(cat: str) -> str:
    s = (cat or "").lower()
    if any(k in s for k in ["baby", "toddler", "infant"]): return "kids"
    if "toys & games" in s or "board games" in s or "toy" in s: return "kids"
    if any(k in s for k in ["teen", "young adult", "ya"]): return "teens"
    return "any"

def _infer_occasion_tags(cat: str) -> str:
    s = (cat or "").lower()
    tags = set(["birthday"])  # default
    if any(k in s for k in ["home & kitchen","furniture","home dΓ©cor","home decor","garden","tools","appliance","cookware","kitchen"]):
        tags.update(["housewarming","thank_you"])
    if any(k in s for k in ["beauty","jewelry","watch","fragrance","cosmetic","makeup","skincare"]):
        tags.update(["valentines","anniversary"])
    if any(k in s for k in ["toys","board game","puzzle","kids","lego"]):
        tags.update(["hanukkah","christmas"])
    if any(k in s for k in ["office","stationery","notebook","pen","planner"]):
        tags.update(["graduation","thank_you"])
    if any(k in s for k in ["electronics","camera","audio","headphones","gaming","computer"]):
        tags.update(["birthday","christmas"])
    if any(k in s for k in ["book","novel","literature"]):
        tags.update(["graduation","thank_you"])
    if any(k in s for k in ["sports","fitness","outdoor","camping","hiking","run","yoga"]):
        tags.update(["birthday"])
    return ",".join(sorted(tags))

def map_amazon_to_schema(df_raw: pd.DataFrame) -> pd.DataFrame:
    cols = {c.lower().strip(): c for c in df_raw.columns}
    get = lambda key: df_raw.get(cols.get(key, ""), "")
    out = pd.DataFrame({
        "name": get("product name"),
        "short_desc": get("description"),
        "tags": get("category"),
        "price_usd": get("selling price").map(_to_price_usd) if "selling price" in cols else np.nan,
        "age_range": "",
        "gender_tags": "any",
        "occasion_tags": "",
        "persona_fit": get("category"),
        "image_url": get("image") if "image" in cols else "",
    })
    # clean
    out["name"] = out["name"].astype(str).str.strip().str.slice(0, 120)
    out["short_desc"] = out["short_desc"].astype(str).str.strip().str.slice(0, 500)
    out["tags"] = out["tags"].astype(str).str.replace("|", ", ").str.lower()
    out["persona_fit"] = out["persona_fit"].astype(str).str.lower()
    # infer occasion & age
    out["occasion_tags"] = out["tags"].map(_infer_occasion_tags)
    out["age_range"]    = out["tags"].map(_infer_age_from_category).fillna("any")
    return out

def build_doc(row: pd.Series) -> str:
    parts = [
        str(row.get("name","")),
        str(row.get("short_desc","")),
        str(row.get("tags","")),
        str(row.get("persona_fit","")),
        str(row.get("occasion_tags","")),
        str(row.get("age_range","")),
    ]
    return " | ".join([p for p in parts if p])

def load_catalog() -> pd.DataFrame:
    try:
        ds = load_dataset("ckandemir/amazon-products", split="train")
        raw = ds.to_pandas()
    except Exception:
        # Fallback (keeps the app alive if internet is blocked)
        raw = pd.DataFrame({
            "Product Name": ["Wireless Earbuds", "Coffee Sampler", "Strategy Board Game"],
            "Description": [
                "Compact earbuds with noise isolation and long battery life.",
                "Four single-origin roasts from small roasters.",
                "Modern eurogame for 2–4 players, 45–60 minutes."
            ],
            "Category": ["Electronics | Audio","Grocery | Coffee","Toys & Games | Board Games"],
            "Selling Price": ["$59.00","$34.00","$39.00"],
            "Image": ["","",""],
        })
    df = map_amazon_to_schema(raw).drop_duplicates(subset=["name","short_desc"])
    if len(df) > MAX_ROWS:
        df = df.sample(n=MAX_ROWS, random_state=42).reset_index(drop=True)
    df["doc"] = df.apply(build_doc, axis=1)
    return df

CATALOG = load_catalog()

# ========================= Business filters =========================
def _contains_ci(series: pd.Series, needle: str) -> pd.Series:
    if not needle: return pd.Series(True, index=series.index)
    pat = re.escape(needle)
    return series.fillna("").str.contains(pat, case=False, regex=True)

def filter_business(df: pd.DataFrame, budget_min=None, budget_max=None,
                    occasion: str=None, age_range: str="any") -> pd.DataFrame:
    m = pd.Series(True, index=df.index)
    if budget_min is not None:
        m &= df["price_usd"].fillna(0) >= float(budget_min)
    if budget_max is not None:
        m &= df["price_usd"].fillna(1e9) <= float(budget_max)
    if occasion:
        m &= _contains_ci(df["occasion_tags"], occasion)
    if age_range and age_range != "any":
        m &= (df["age_range"].fillna("any").isin([age_range, "any"]))
    return df[m]

# ========================= Embeddings + FAISS =========================
class EmbeddingStore:
    def __init__(self, docs: List[str]):
        self.docs = docs
        self.model_cache: Dict[str, SentenceTransformer] = {}
        self.index_cache: Dict[str, faiss.Index] = {}
        self.dim_cache: Dict[str, int] = {}

    def _build(self, model_id: str):
        model = SentenceTransformer(model_id)
        embs = model.encode(self.docs, convert_to_numpy=True, normalize_embeddings=True)
        index = faiss.IndexFlatIP(embs.shape[1])  # cosine if normalized
        index.add(embs)
        self.model_cache[model_id] = model
        self.index_cache[model_id] = index
        self.dim_cache[model_id] = embs.shape[1]

    def ensure_ready(self, model_id: str):
        if model_id not in self.index_cache:
            self._build(model_id)

    def search(self, model_id: str, query: str, topn: int) -> Tuple[np.ndarray, np.ndarray]:
        self.ensure_ready(model_id)
        model = self.model_cache[model_id]
        index = self.index_cache[model_id]
        qv = model.encode([query], convert_to_numpy=True, normalize_embeddings=True)
        sims, idxs = index.search(qv, topn)
        return sims[0], idxs[0]

EMB_STORE = EmbeddingStore(CATALOG["doc"].tolist())

def profile_to_query(profile: Dict) -> str:
    """Weighted, doc-aligned query: focuses on interests/occasion/age used in docs."""
    interests = [t.strip().lower() for t in profile.get("interests", []) if t.strip()]
    interests_expanded = interests + interests + interests  # weight *3
    occasion = (profile.get("occasion", "") or "").lower()
    age = profile.get("age_range", "any")
    parts = []
    if interests_expanded: parts.append(", ".join(interests_expanded))
    if occasion: parts.append(occasion)
    if age and age != "any": parts.append(age)
    return " | ".join(parts).strip()

def recommend_topk_embeddings(profile: Dict, model_key: str, k: int=3) -> pd.DataFrame:
    model_id = MODEL_CHOICES.get(model_key, list(MODEL_CHOICES.values())[0])
    query = profile_to_query(profile)

    # global search on whole catalog
    sims, idxs = EMB_STORE.search(model_id, query, topn=min(max(k*50, k), len(CATALOG)))

    # filter to business subset
    df_f = filter_business(
        CATALOG,
        budget_min=profile.get("budget_min"),
        budget_max=profile.get("budget_max"),
        occasion=profile.get("occasion"),
        age_range=profile.get("age_range","any"),
    )
    if df_f.empty: df_f = CATALOG

    order = np.argsort(-sims)  # descending similarity
    seen, picks = set(), []
    for gi in idxs[order]:
        gi = int(gi)
        if gi not in df_f.index:
            continue
        nm = CATALOG.loc[gi, "name"]
        if nm in seen:
            continue
        seen.add(nm)
        picks.append(gi)
        if len(picks) >= k:
            break

    if not picks:
        res = df_f.head(k).copy()
        res["similarity"] = np.nan
        return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]]

    gi_to_sim = {int(i): float(s) for i, s in zip(idxs, sims)}
    res = CATALOG.loc[picks].copy()
    res["similarity"] = [gi_to_sim.get(int(i), np.nan) for i in picks]
    return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]]

# ========================= Synthetic item + message =========================
def generate_item(profile: Dict) -> Dict:
    interests = profile.get("interests", [])
    occasion  = profile.get("occasion","birthday")
    budget    = profile.get("budget_max", profile.get("budget_usd", 50)) or 50
    age       = profile.get("age_range","any")
    core = (interests[0] if interests else "hobby").strip() or "hobby"
    style = random.choice(["personalized","experience","bundle"])
    if style == "personalized":
        base_name = f"Custom {core} accessory with initials"
        base_desc = f"Thoughtful personalized {core} accessory tailored to their taste."
    elif style == "experience":
        base_name = f"{core.title()} workshop voucher"
        base_desc = f"A guided intro session to explore {core} in a fun, hands-on way."
    else:
        base_name = f"{core.title()} starter bundle"
        base_desc = f"A curated set to kickstart their {core} passion."
    if age == "kids":
        base_desc += " Suitable for kids with safe, age-appropriate materials."
    elif age == "teens":
        base_desc += " Trendy pick that suits young enthusiasts."
    elif age == "senior":
        base_desc += " Comfortable and easy to use."
    price = float(np.clip(float(budget), 10, 300))
    return {
        "name": f"{base_name} ({occasion})",
        "short_desc": base_desc,
        "price_usd": price,
        "occasion_tags": occasion,
        "persona_fit": ", ".join(interests) or "general",
        "age_range": age,
        "image_url": ""
    }

def generate_message(profile: Dict) -> str:
    name = profile.get("recipient_name","Friend")
    occasion = profile.get("occasion","birthday")
    tone = profile.get("tone","warm and friendly")
    return (f"Dear {name},\n"
            f"Happy {occasion}! Wishing you health, joy, and wonderful memories. "
            f"May your goals come true. With {tone}.")

# ========================= Gradio UI =========================
EXAMPLES = [
    [["tech","music"], "birthday", 20, 60, "Noa", "adult (18–64)", "MiniLM (384d)", "warm and friendly"],
    [["home","cooking","practical"], "housewarming", 25, 45, "Daniel", "adult (18–64)", "MiniLM (384d)", "warm"],
    [["games","photography"], "birthday", 30, 120, "Omer", "teen (13–17)", "MPNet (768d)", "fun"],
    [["reading","design","aesthetic"], "thank_you", 15, 35, "Maya", "any", "E5-base (768d)", "friendly"],
]

def safe_markdown_table(df: pd.DataFrame) -> str:
    try:
        return df.to_markdown(index=False)
    except Exception:
        return df.to_string(index=False)

def ui_predict(interests_list: List[str], occasion: str, budget_min: float, budget_max: float,
               recipient_name: str, age_label: str, model_key: str, tone: str):
    try:
        # sanity
        if budget_min is None: budget_min = 20.0
        if budget_max is None: budget_max = 60.0
        if budget_min > budget_max:
            budget_min, budget_max = budget_max, budget_min

        age_range = AGE_OPTIONS.get(age_label, "any")
        profile = {
            "recipient_name": recipient_name or "Friend",
            "interests": interests_list or [],
            "occasion": occasion or "birthday",
            "budget_min": float(budget_min),
            "budget_max": float(budget_max),
            "budget_usd": float(budget_max),
            "age_range": age_range,
            "tone": tone or "warm and friendly",
        }

        recs = recommend_topk_embeddings(profile, model_key, k=3)
        gen = generate_item(profile)
        msg = generate_message(profile)

        top3_md = safe_markdown_table(recs[["name","short_desc","price_usd","age_range","similarity"]])
        gen_md  = f"**{gen['name']}**\n\n{gen['short_desc']}\n\n~${gen['price_usd']:.0f}"
        return top3_md, gen_md, msg
    except Exception as e:
        return f":warning: Error: {e}", "", ""

with gr.Blocks() as demo:
    gr.Markdown(TITLE)

    with gr.Row():
        interests = gr.CheckboxGroup(
            label="Interests (select a few)",
            choices=INTEREST_OPTIONS,
            value=["tech","music"],
            interactive=True
        )
    with gr.Row():
        occasion = gr.Dropdown(label="Occasion", choices=OCCASION_OPTIONS, value="birthday")
        age = gr.Dropdown(label="Age group", choices=list(AGE_OPTIONS.keys()), value="adult (18–64)")
        model = gr.Dropdown(label="Embedding model", choices=list(MODEL_CHOICES.keys()), value="MiniLM (384d)")

    # Two sliders (for older Gradio versions): min + max budget
    with gr.Row():
        budget_min = gr.Slider(label="Min budget (USD)", minimum=5, maximum=500, step=1, value=20)
        budget_max = gr.Slider(label="Max budget (USD)", minimum=5, maximum=500, step=1, value=60)

    with gr.Row():
        recipient_name = gr.Textbox(label="Recipient name", value="Noa")
        tone = gr.Textbox(label="Message tone", value="warm and friendly")

    go = gr.Button("Get GIfty 🎯")
    out_top3 = gr.Markdown(label="Top-3 recommendations")
    out_gen  = gr.Markdown(label="Generated item")
    out_msg  = gr.Markdown(label="Personalized message")

    gr.Examples(
        EXAMPLES,
        [interests, occasion, budget_min, budget_max, recipient_name, age, model, tone],
        label="Quick examples",
    )

    go.click(
        ui_predict,
        [interests, occasion, budget_min, budget_max, recipient_name, age, model, tone],
        [out_top3, out_gen, out_msg]
    )

if __name__ == "__main__":
    demo.launch()