Spaces:
Sleeping
Sleeping
File size: 15,465 Bytes
64b2f09 e1a3b1d d6fa84d 64b2f09 c9f825a e1a3b1d 64b2f09 e1a3b1d 64b2f09 e1a3b1d 64b2f09 c9f825a e1a3b1d c9f825a e1a3b1d 64b2f09 c9f825a d30a052 e1a3b1d c9f825a 64b2f09 e1a3b1d 64b2f09 d30a052 64b2f09 e1a3b1d 64b2f09 e1a3b1d 64b2f09 e1a3b1d 64b2f09 c9f825a 64b2f09 e1a3b1d c9f825a 64b2f09 e1a3b1d c9f825a 64b2f09 c9f825a 64b2f09 e1a3b1d 64b2f09 e1a3b1d 64b2f09 c9f825a 64b2f09 e1a3b1d 64b2f09 e1a3b1d d6fa84d d30a052 d6fa84d d30a052 64b2f09 d6fa84d d30a052 e1a3b1d d30a052 e1a3b1d c9f825a e1a3b1d 64b2f09 e1a3b1d c9f825a 64b2f09 c9f825a 64b2f09 c9f825a 64b2f09 c9f825a e1a3b1d 64b2f09 c9f825a 64b2f09 c9f825a 64b2f09 c9f825a 64b2f09 e1a3b1d 64b2f09 d6fa84d 64b2f09 e1a3b1d d6fa84d c9f825a d6fa84d d30a052 c9f825a d30a052 c9f825a d6fa84d c9f825a e1a3b1d c9f825a e1a3b1d c9f825a 64b2f09 e1a3b1d 64b2f09 c9f825a e1a3b1d c9f825a 64b2f09 c9f825a e1a3b1d d30a052 d6fa84d d30a052 64b2f09 c9f825a 64b2f09 e1a3b1d 64b2f09 c9f825a d6fa84d c9f825a d6fa84d c9f825a 64b2f09 6966c21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# app.py
# π GIfty β Smart Gift Recommender (Embeddings + FAISS)
# Dataset: ckandemir/amazon-products (Hugging Face)
# UI: Gradio (English)
#
# Requirements (see requirements.txt):
# gradio, datasets, pandas, numpy, sentence-transformers, faiss-cpu, tabulate
import os, re, random
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import faiss
# ========================= Config =========================
MAX_ROWS = int(os.getenv("MAX_ROWS", "10000")) # cap for speed
TITLE = "# π GIfty β Smart Gift Recommender\n*Top-3 similar picks + 1 generated idea + personalized message*"
OCCASION_OPTIONS = [
"birthday", "anniversary", "valentines", "graduation",
"housewarming", "christmas", "hanukkah", "thank_you",
]
AGE_OPTIONS = {
"any": "any",
"kid (3β12)": "kids",
"teen (13β17)": "teens",
"adult (18β64)": "adult",
"senior (65+)": "senior",
}
INTEREST_OPTIONS = [
"reading","writing","tech","travel","fitness","cooking","tea","coffee",
"games","movies","plants","music","design","stationery","home","experience",
"digital","aesthetic","premium","eco","practical","minimalist","social","party",
"photography","outdoors","pets","beauty","jewelry"
]
MODEL_CHOICES = {
"MiniLM (384d)": "sentence-transformers/all-MiniLM-L6-v2",
"MPNet (768d)": "sentence-transformers/all-mpnet-base-v2",
"E5-base (768d)": "intfloat/e5-base-v2",
}
# ========================= Data loading & schema =========================
def _to_price_usd(x):
s = str(x).strip().replace("$","").replace(",","")
try: return float(s)
except: return np.nan
def _infer_age_from_category(cat: str) -> str:
s = (cat or "").lower()
if any(k in s for k in ["baby", "toddler", "infant"]): return "kids"
if "toys & games" in s or "board games" in s or "toy" in s: return "kids"
if any(k in s for k in ["teen", "young adult", "ya"]): return "teens"
return "any"
def _infer_occasion_tags(cat: str) -> str:
s = (cat or "").lower()
tags = set(["birthday"]) # default
if any(k in s for k in ["home & kitchen","furniture","home dΓ©cor","home decor","garden","tools","appliance","cookware","kitchen"]):
tags.update(["housewarming","thank_you"])
if any(k in s for k in ["beauty","jewelry","watch","fragrance","cosmetic","makeup","skincare"]):
tags.update(["valentines","anniversary"])
if any(k in s for k in ["toys","board game","puzzle","kids","lego"]):
tags.update(["hanukkah","christmas"])
if any(k in s for k in ["office","stationery","notebook","pen","planner"]):
tags.update(["graduation","thank_you"])
if any(k in s for k in ["electronics","camera","audio","headphones","gaming","computer"]):
tags.update(["birthday","christmas"])
if any(k in s for k in ["book","novel","literature"]):
tags.update(["graduation","thank_you"])
if any(k in s for k in ["sports","fitness","outdoor","camping","hiking","run","yoga"]):
tags.update(["birthday"])
return ",".join(sorted(tags))
def map_amazon_to_schema(df_raw: pd.DataFrame) -> pd.DataFrame:
cols = {c.lower().strip(): c for c in df_raw.columns}
get = lambda key: df_raw.get(cols.get(key, ""), "")
out = pd.DataFrame({
"name": get("product name"),
"short_desc": get("description"),
"tags": get("category"),
"price_usd": get("selling price").map(_to_price_usd) if "selling price" in cols else np.nan,
"age_range": "",
"gender_tags": "any",
"occasion_tags": "",
"persona_fit": get("category"),
"image_url": get("image") if "image" in cols else "",
})
# clean
out["name"] = out["name"].astype(str).str.strip().str.slice(0, 120)
out["short_desc"] = out["short_desc"].astype(str).str.strip().str.slice(0, 500)
out["tags"] = out["tags"].astype(str).str.replace("|", ", ").str.lower()
out["persona_fit"] = out["persona_fit"].astype(str).str.lower()
# infer occasion & age
out["occasion_tags"] = out["tags"].map(_infer_occasion_tags)
out["age_range"] = out["tags"].map(_infer_age_from_category).fillna("any")
return out
def build_doc(row: pd.Series) -> str:
parts = [
str(row.get("name","")),
str(row.get("short_desc","")),
str(row.get("tags","")),
str(row.get("persona_fit","")),
str(row.get("occasion_tags","")),
str(row.get("age_range","")),
]
return " | ".join([p for p in parts if p])
def load_catalog() -> pd.DataFrame:
try:
ds = load_dataset("ckandemir/amazon-products", split="train")
raw = ds.to_pandas()
except Exception:
# Fallback (keeps the app alive if internet is blocked)
raw = pd.DataFrame({
"Product Name": ["Wireless Earbuds", "Coffee Sampler", "Strategy Board Game"],
"Description": [
"Compact earbuds with noise isolation and long battery life.",
"Four single-origin roasts from small roasters.",
"Modern eurogame for 2β4 players, 45β60 minutes."
],
"Category": ["Electronics | Audio","Grocery | Coffee","Toys & Games | Board Games"],
"Selling Price": ["$59.00","$34.00","$39.00"],
"Image": ["","",""],
})
df = map_amazon_to_schema(raw).drop_duplicates(subset=["name","short_desc"])
if len(df) > MAX_ROWS:
df = df.sample(n=MAX_ROWS, random_state=42).reset_index(drop=True)
df["doc"] = df.apply(build_doc, axis=1)
return df
CATALOG = load_catalog()
# ========================= Business filters =========================
def _contains_ci(series: pd.Series, needle: str) -> pd.Series:
if not needle: return pd.Series(True, index=series.index)
pat = re.escape(needle)
return series.fillna("").str.contains(pat, case=False, regex=True)
def filter_business(df: pd.DataFrame, budget_min=None, budget_max=None,
occasion: str=None, age_range: str="any") -> pd.DataFrame:
m = pd.Series(True, index=df.index)
if budget_min is not None:
m &= df["price_usd"].fillna(0) >= float(budget_min)
if budget_max is not None:
m &= df["price_usd"].fillna(1e9) <= float(budget_max)
if occasion:
m &= _contains_ci(df["occasion_tags"], occasion)
if age_range and age_range != "any":
m &= (df["age_range"].fillna("any").isin([age_range, "any"]))
return df[m]
# ========================= Embeddings + FAISS =========================
class EmbeddingStore:
def __init__(self, docs: List[str]):
self.docs = docs
self.model_cache: Dict[str, SentenceTransformer] = {}
self.index_cache: Dict[str, faiss.Index] = {}
self.dim_cache: Dict[str, int] = {}
def _build(self, model_id: str):
model = SentenceTransformer(model_id)
embs = model.encode(self.docs, convert_to_numpy=True, normalize_embeddings=True)
index = faiss.IndexFlatIP(embs.shape[1]) # cosine if normalized
index.add(embs)
self.model_cache[model_id] = model
self.index_cache[model_id] = index
self.dim_cache[model_id] = embs.shape[1]
def ensure_ready(self, model_id: str):
if model_id not in self.index_cache:
self._build(model_id)
def search(self, model_id: str, query: str, topn: int) -> Tuple[np.ndarray, np.ndarray]:
self.ensure_ready(model_id)
model = self.model_cache[model_id]
index = self.index_cache[model_id]
qv = model.encode([query], convert_to_numpy=True, normalize_embeddings=True)
sims, idxs = index.search(qv, topn)
return sims[0], idxs[0]
EMB_STORE = EmbeddingStore(CATALOG["doc"].tolist())
def profile_to_query(profile: Dict) -> str:
"""Weighted, doc-aligned query: focuses on interests/occasion/age used in docs."""
interests = [t.strip().lower() for t in profile.get("interests", []) if t.strip()]
interests_expanded = interests + interests + interests # weight *3
occasion = (profile.get("occasion", "") or "").lower()
age = profile.get("age_range", "any")
parts = []
if interests_expanded: parts.append(", ".join(interests_expanded))
if occasion: parts.append(occasion)
if age and age != "any": parts.append(age)
return " | ".join(parts).strip()
def recommend_topk_embeddings(profile: Dict, model_key: str, k: int=3) -> pd.DataFrame:
model_id = MODEL_CHOICES.get(model_key, list(MODEL_CHOICES.values())[0])
query = profile_to_query(profile)
# global search on whole catalog
sims, idxs = EMB_STORE.search(model_id, query, topn=min(max(k*50, k), len(CATALOG)))
# filter to business subset
df_f = filter_business(
CATALOG,
budget_min=profile.get("budget_min"),
budget_max=profile.get("budget_max"),
occasion=profile.get("occasion"),
age_range=profile.get("age_range","any"),
)
if df_f.empty: df_f = CATALOG
order = np.argsort(-sims) # descending similarity
seen, picks = set(), []
for gi in idxs[order]:
gi = int(gi)
if gi not in df_f.index:
continue
nm = CATALOG.loc[gi, "name"]
if nm in seen:
continue
seen.add(nm)
picks.append(gi)
if len(picks) >= k:
break
if not picks:
res = df_f.head(k).copy()
res["similarity"] = np.nan
return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]]
gi_to_sim = {int(i): float(s) for i, s in zip(idxs, sims)}
res = CATALOG.loc[picks].copy()
res["similarity"] = [gi_to_sim.get(int(i), np.nan) for i in picks]
return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]]
# ========================= Synthetic item + message =========================
def generate_item(profile: Dict) -> Dict:
interests = profile.get("interests", [])
occasion = profile.get("occasion","birthday")
budget = profile.get("budget_max", profile.get("budget_usd", 50)) or 50
age = profile.get("age_range","any")
core = (interests[0] if interests else "hobby").strip() or "hobby"
style = random.choice(["personalized","experience","bundle"])
if style == "personalized":
base_name = f"Custom {core} accessory with initials"
base_desc = f"Thoughtful personalized {core} accessory tailored to their taste."
elif style == "experience":
base_name = f"{core.title()} workshop voucher"
base_desc = f"A guided intro session to explore {core} in a fun, hands-on way."
else:
base_name = f"{core.title()} starter bundle"
base_desc = f"A curated set to kickstart their {core} passion."
if age == "kids":
base_desc += " Suitable for kids with safe, age-appropriate materials."
elif age == "teens":
base_desc += " Trendy pick that suits young enthusiasts."
elif age == "senior":
base_desc += " Comfortable and easy to use."
price = float(np.clip(float(budget), 10, 300))
return {
"name": f"{base_name} ({occasion})",
"short_desc": base_desc,
"price_usd": price,
"occasion_tags": occasion,
"persona_fit": ", ".join(interests) or "general",
"age_range": age,
"image_url": ""
}
def generate_message(profile: Dict) -> str:
name = profile.get("recipient_name","Friend")
occasion = profile.get("occasion","birthday")
tone = profile.get("tone","warm and friendly")
return (f"Dear {name},\n"
f"Happy {occasion}! Wishing you health, joy, and wonderful memories. "
f"May your goals come true. With {tone}.")
# ========================= Gradio UI =========================
EXAMPLES = [
[["tech","music"], "birthday", 20, 60, "Noa", "adult (18β64)", "MiniLM (384d)", "warm and friendly"],
[["home","cooking","practical"], "housewarming", 25, 45, "Daniel", "adult (18β64)", "MiniLM (384d)", "warm"],
[["games","photography"], "birthday", 30, 120, "Omer", "teen (13β17)", "MPNet (768d)", "fun"],
[["reading","design","aesthetic"], "thank_you", 15, 35, "Maya", "any", "E5-base (768d)", "friendly"],
]
def safe_markdown_table(df: pd.DataFrame) -> str:
try:
return df.to_markdown(index=False)
except Exception:
return df.to_string(index=False)
def ui_predict(interests_list: List[str], occasion: str, budget_min: float, budget_max: float,
recipient_name: str, age_label: str, model_key: str, tone: str):
try:
# sanity
if budget_min is None: budget_min = 20.0
if budget_max is None: budget_max = 60.0
if budget_min > budget_max:
budget_min, budget_max = budget_max, budget_min
age_range = AGE_OPTIONS.get(age_label, "any")
profile = {
"recipient_name": recipient_name or "Friend",
"interests": interests_list or [],
"occasion": occasion or "birthday",
"budget_min": float(budget_min),
"budget_max": float(budget_max),
"budget_usd": float(budget_max),
"age_range": age_range,
"tone": tone or "warm and friendly",
}
recs = recommend_topk_embeddings(profile, model_key, k=3)
gen = generate_item(profile)
msg = generate_message(profile)
top3_md = safe_markdown_table(recs[["name","short_desc","price_usd","age_range","similarity"]])
gen_md = f"**{gen['name']}**\n\n{gen['short_desc']}\n\n~${gen['price_usd']:.0f}"
return top3_md, gen_md, msg
except Exception as e:
return f":warning: Error: {e}", "", ""
with gr.Blocks() as demo:
gr.Markdown(TITLE)
with gr.Row():
interests = gr.CheckboxGroup(
label="Interests (select a few)",
choices=INTEREST_OPTIONS,
value=["tech","music"],
interactive=True
)
with gr.Row():
occasion = gr.Dropdown(label="Occasion", choices=OCCASION_OPTIONS, value="birthday")
age = gr.Dropdown(label="Age group", choices=list(AGE_OPTIONS.keys()), value="adult (18β64)")
model = gr.Dropdown(label="Embedding model", choices=list(MODEL_CHOICES.keys()), value="MiniLM (384d)")
# Two sliders (for older Gradio versions): min + max budget
with gr.Row():
budget_min = gr.Slider(label="Min budget (USD)", minimum=5, maximum=500, step=1, value=20)
budget_max = gr.Slider(label="Max budget (USD)", minimum=5, maximum=500, step=1, value=60)
with gr.Row():
recipient_name = gr.Textbox(label="Recipient name", value="Noa")
tone = gr.Textbox(label="Message tone", value="warm and friendly")
go = gr.Button("Get GIfty π―")
out_top3 = gr.Markdown(label="Top-3 recommendations")
out_gen = gr.Markdown(label="Generated item")
out_msg = gr.Markdown(label="Personalized message")
gr.Examples(
EXAMPLES,
[interests, occasion, budget_min, budget_max, recipient_name, age, model, tone],
label="Quick examples",
)
go.click(
ui_predict,
[interests, occasion, budget_min, budget_max, recipient_name, age, model, tone],
[out_top3, out_gen, out_msg]
)
if __name__ == "__main__":
demo.launch()
|