Spaces:
Runtime error
Runtime error
File size: 9,947 Bytes
7426826 f78ddd2 ad6973a 9f23d95 f78ddd2 7426826 9f23d95 8f7c813 9f23d95 ad6973a 9f23d95 7426826 8f7c813 f78ddd2 8f7c813 f78ddd2 8f7c813 9f23d95 8f7c813 9f23d95 8f7c813 f78ddd2 f7aa9c6 f78ddd2 f7aa9c6 f78ddd2 8f7c813 f78ddd2 8f7c813 f78ddd2 8f7c813 f78ddd2 8f7c813 f78ddd2 78e6083 f78ddd2 8f7c813 78e6083 8f7c813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import streamlit as st
from PIL import Image
import random
#from sahi.utils.yolov8
from sahi import AutoDetectionModel
from utils import sahi_yolov8m_inference
import sahi.utils.file
from streamlit_image_comparison import image_comparison
#import sahi.utils.mmdet
#MMDET_YOLOX_TINY_MODEL_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/resolve/main/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth"
#MMDET_YOLOX_TINY_MODEL_PATH = "yolox.pt"
#MMDET_YOLOX_TINY_CONFIG_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/raw/main/yolox_tiny_8x8_300e_coco.py"
#MMDET_YOLOX_TINY_CONFIG_PATH = "config.py"
YOLOV8M_MODEL_URL = "https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt"
YOLOV8M_MODEL_PATH = "tests/data/models/yolov8/yolov8m.pt"
#YOLOV8M_MODEL_PATH = 'models/yolov8m.pt'
IMAGE_TO_URL = {
"apple_tree.jpg": "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
"highway.jpg": "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
"highway2.jpg": "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
"highway3.jpg": "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
"highway2-yolov8m.jpg": "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
"highway2-sahi.jpg": "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
}
@st.cache_data(show_spinner=False)
def download_comparison_images():
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
"highway2-yolov8m.jpg",
)
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
"highway2-sahi.jpg",
)
@st.cache_data(show_spinner=False)
def get_model():
sahi.utils.file.download_from_url(
YOLOV8M_MODEL_URL,
YOLOV8M_MODEL_PATH,
)
#sahi.utils.file.download_from_url(
# MMDET_YOLOX_TINY_MODEL_URL,
# MMDET_YOLOX_TINY_MODEL_PATH,
#)
#sahi.utils.file.download_from_url(
# MMDET_YOLOX_TINY_CONFIG_URL,
# MMDET_YOLOX_TINY_CONFIG_PATH,
#)
#sahi.utils.yolov8.download_yolov8m_model(destination_path = YOLOV8M_MODEL_PATH)
detection_model = AutoDetectionModel.from_pretrained(
model_type='yolov8',
model_path=YOLOV8M_MODEL_PATH,
#config_path=MMDET_YOLOX_TINY_CONFIG_PATH,
confidence_threshold=0.5,
device="cpu",
)
return detection_model
class SpinnerTexts:
def __init__(self):
self.ind_history_list = []
self.text_list = [
"Meanwhile check out [MMDetection Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_mmdetection.ipynb)!",
"Meanwhile check out [YOLOv5 Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_yolov5.ipynb)!",
"Meanwhile check out [aerial object detection with SAHI](https://blog.ml6.eu/how-to-detect-small-objects-in-very-large-images-70234bab0f98?gi=b434299595d4)!",
"Meanwhile check out [COCO Utilities of SAHI](https://github.com/obss/sahi/blob/main/docs/COCO.md)!",
"Meanwhile check out [FiftyOne utilities of SAHI](https://github.com/obss/sahi#fiftyone-utilities)!",
"Meanwhile [give a Github star to SAHI](https://github.com/obss/sahi/stargazers)!",
"Meanwhile see [how easy is to install SAHI](https://github.com/obss/sahi#getting-started)!",
"Meanwhile check out [Medium blogpost of SAHI](https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80)!",
"Meanwhile try out [YOLOv5 HF Spaces demo of SAHI](https://huggingface.co/spaces/fcakyon/sahi-yolov5)!",
]
def _store(self, ind):
if len(self.ind_history_list) == 6:
self.ind_history_list.pop(0)
self.ind_history_list.append(ind)
def get(self):
ind = 0
while ind in self.ind_history_list:
ind = random.randint(0, len(self.text_list) - 1)
self._store(ind)
return self.text_list[ind]
st.set_page_config(
page_title="small object detection with sahi + yolov8",
page_icon="π",
layout="centered",
initial_sidebar_state="auto",
)
download_comparison_images()
if "last_spinner_texts" not in st.session_state:
st.session_state["last_spinner_texts"] = SpinnerTexts()
if "output_1" not in st.session_state:
st.session_state["output_1"] = Image.open("highway2-yolov8m.jpg")
if "output_2" not in st.session_state:
st.session_state["output_2"] = Image.open("highway2-sahi.jpg")
st.markdown(
"""
<h2 style='text-align: center'>
Small Object Detection <br />
with SAHI + YOLOv8
</h2>
""",
unsafe_allow_html=True,
)
# st.markdown(
# """
# <p style='text-align: center'>
# <a href='https://github.com/obss/sahi' target='_blank'>SAHI Github</a> | <a href='https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox' target='_blank'>YOLOX Github</a> | <a href='https://huggingface.co/spaces/fcakyon/sahi-yolov5' target='_blank'>SAHI+YOLOv5 Demo</a>
# <br />
# Follow me for more! <a href='https://twitter.com/fcakyon' target='_blank'> <img src="https://img.icons8.com/color/48/000000/twitter--v1.png" height="30"></a><a href='https://github.com/fcakyon' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/github.png" height="27"></a><a href='https://www.linkedin.com/in/fcakyon/' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/linkedin.png" height="30"></a> <a href='https://fcakyon.medium.com/' target='_blank'><img src="https://img.icons8.com/ios-filled/48/000000/medium-monogram.png" height="26"></a>
# </p>
# """,
# unsafe_allow_html=True,
# )
st.write("##")
with st.expander("Usage"):
st.markdown(
"""
<p>
1. Upload or select the input image πΌοΈ
<br />
2. (Optional) Set SAHI parameters βοΈ
<br />
3. Press to "π Perform Prediction"
<br />
4. Enjoy sliding image comparison π₯
</p>
""",
unsafe_allow_html=True,
)
st.write("##")
col1, col2, col3 = st.columns([6, 1, 6])
with col1:
st.markdown(f"##### Set input image:")
# set input image by upload
image_file = st.file_uploader(
"Upload an image to test:", type=["jpg", "jpeg", "png"]
)
# set input image from exapmles
def slider_func(option):
option_to_id = {
"apple_tree.jpg": str(1),
"highway.jpg": str(2),
"highway2.jpg": str(3),
"highway3.jpg": str(4),
}
return option_to_id[option]
slider = st.select_slider(
"Or select from example images:",
options=["apple_tree.jpg", "highway.jpg", "highway2.jpg", "highway3.jpg"],
format_func=slider_func,
value="highway2.jpg",
)
# visualize input image
if image_file is not None:
image = Image.open(image_file)
else:
image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider])
st.image(image, width=300)
with col3:
st.markdown(f"##### Set SAHI parameters:")
slice_size = st.number_input("slice_size", min_value=256, value=512, step=256)
overlap_ratio = st.number_input(
"overlap_ratio", min_value=0.0, max_value=0.6, value=0.2, step=0.2
)
#postprocess_type = st.selectbox(
# "postprocess_type", options=["NMS", "GREEDYNMM"], index=0
#)
#postprocess_match_metric = st.selectbox(
# "postprocess_match_metric", options=["IOU", "IOS"], index=0
#)
postprocess_match_threshold = st.number_input(
"postprocess_match_threshold", value=0.5, step=0.1
)
#postprocess_class_agnostic = st.checkbox("postprocess_class_agnostic", value=True)
col1, col2, col3 = st.columns([4, 3, 4])
with col2:
submit = st.button("π Perform Prediction")
if submit:
# perform prediction
with st.spinner(
text="Downloading model weight.. "
+ st.session_state["last_spinner_texts"].get()
):
detection_model = get_model()
image_size = 1280
with st.spinner(
text="Performing prediction.. " + st.session_state["last_spinner_texts"].get()
):
output_1, output_2 = sahi_yolov8m_inference(
image,
detection_model,
image_size=image_size,
slice_height=slice_size,
slice_width=slice_size,
overlap_height_ratio=overlap_ratio,
overlap_width_ratio=overlap_ratio,
#postprocess_type=postprocess_type,
#postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
#postprocess_class_agnostic=postprocess_class_agnostic,
)
st.session_state["output_1"] = output_1
st.session_state["output_2"] = output_2
st.markdown(f"##### YOLOv8 Standard vs SAHI Prediction:")
static_component = image_comparison(
img1=st.session_state["output_1"],
img2=st.session_state["output_2"],
label1="YOLOX",
label2="SAHI+YOLOX",
width=700,
starting_position=50,
show_labels=True,
make_responsive=True,
in_memory=True,
)
# st.markdown(
# """
# <p style='text-align: center'>
# prepared with <a href='https://github.com/fcakyon/streamlit-image-comparison' target='_blank'>streamlit-image-comparison</a>
# </p>
# """,
# unsafe_allow_html=True,
# ) |