File size: 9,947 Bytes
7426826
f78ddd2
 
ad6973a
9f23d95
 
 
f78ddd2
7426826
9f23d95
 
 
 
 
 
 
8f7c813
 
9f23d95
 
ad6973a
9f23d95
7426826
8f7c813
 
 
 
 
 
 
 
f78ddd2
 
8f7c813
 
 
 
 
 
 
 
 
 
f78ddd2
 
8f7c813
 
9f23d95
8f7c813
 
 
 
 
 
 
 
 
 
 
 
9f23d95
8f7c813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f78ddd2
 
 
f7aa9c6
f78ddd2
 
 
f7aa9c6
f78ddd2
8f7c813
f78ddd2
8f7c813
 
f78ddd2
8f7c813
 
f78ddd2
8f7c813
 
f78ddd2
 
 
 
 
78e6083
f78ddd2
 
 
 
8f7c813
 
 
 
 
 
 
 
 
78e6083
8f7c813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import streamlit as st
from PIL import Image
import random
#from sahi.utils.yolov8
from sahi import AutoDetectionModel
from utils import sahi_yolov8m_inference
import sahi.utils.file
from streamlit_image_comparison import image_comparison

#import sahi.utils.mmdet

#MMDET_YOLOX_TINY_MODEL_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/resolve/main/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth"
#MMDET_YOLOX_TINY_MODEL_PATH = "yolox.pt"
#MMDET_YOLOX_TINY_CONFIG_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/raw/main/yolox_tiny_8x8_300e_coco.py"
#MMDET_YOLOX_TINY_CONFIG_PATH = "config.py"

YOLOV8M_MODEL_URL = "https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt"
YOLOV8M_MODEL_PATH = "tests/data/models/yolov8/yolov8m.pt"


#YOLOV8M_MODEL_PATH = 'models/yolov8m.pt'


IMAGE_TO_URL = {
    "apple_tree.jpg": "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
    "highway.jpg": "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
    "highway2.jpg": "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
    "highway3.jpg": "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
    "highway2-yolov8m.jpg": "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
    "highway2-sahi.jpg": "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
}


@st.cache_data(show_spinner=False)
def download_comparison_images():
    sahi.utils.file.download_from_url(
        "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
        "highway2-yolov8m.jpg",
    )
    sahi.utils.file.download_from_url(
        "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
        "highway2-sahi.jpg",
    )


@st.cache_data(show_spinner=False)
def get_model():
    
    sahi.utils.file.download_from_url(
        YOLOV8M_MODEL_URL,
        YOLOV8M_MODEL_PATH,
    )
    #sahi.utils.file.download_from_url(
    #    MMDET_YOLOX_TINY_MODEL_URL,
    #    MMDET_YOLOX_TINY_MODEL_PATH,
    #)
    #sahi.utils.file.download_from_url(
    #    MMDET_YOLOX_TINY_CONFIG_URL,
    #    MMDET_YOLOX_TINY_CONFIG_PATH,
    #)
    
    #sahi.utils.yolov8.download_yolov8m_model(destination_path = YOLOV8M_MODEL_PATH)

    detection_model = AutoDetectionModel.from_pretrained(
        model_type='yolov8',
        model_path=YOLOV8M_MODEL_PATH,
        #config_path=MMDET_YOLOX_TINY_CONFIG_PATH,
        confidence_threshold=0.5,
        device="cpu",
    )
    return detection_model


class SpinnerTexts:
    def __init__(self):
        self.ind_history_list = []
        self.text_list = [
            "Meanwhile check out [MMDetection Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_mmdetection.ipynb)!",
            "Meanwhile check out [YOLOv5 Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_yolov5.ipynb)!",
            "Meanwhile check out [aerial object detection with SAHI](https://blog.ml6.eu/how-to-detect-small-objects-in-very-large-images-70234bab0f98?gi=b434299595d4)!",
            "Meanwhile check out [COCO Utilities of SAHI](https://github.com/obss/sahi/blob/main/docs/COCO.md)!",
            "Meanwhile check out [FiftyOne utilities of SAHI](https://github.com/obss/sahi#fiftyone-utilities)!",
            "Meanwhile [give a Github star to SAHI](https://github.com/obss/sahi/stargazers)!",
            "Meanwhile see [how easy is to install SAHI](https://github.com/obss/sahi#getting-started)!",
            "Meanwhile check out [Medium blogpost of SAHI](https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80)!",
            "Meanwhile try out [YOLOv5 HF Spaces demo of SAHI](https://huggingface.co/spaces/fcakyon/sahi-yolov5)!",
        ]

    def _store(self, ind):
         if len(self.ind_history_list) == 6:
             self.ind_history_list.pop(0)
         self.ind_history_list.append(ind)

    def get(self):
        ind = 0
        while ind in self.ind_history_list:
            ind = random.randint(0, len(self.text_list) - 1)
        self._store(ind)
        return self.text_list[ind]


st.set_page_config(
    page_title="small object detection with sahi + yolov8",
    page_icon="πŸš€",
    layout="centered",
    initial_sidebar_state="auto",
 )

download_comparison_images()

if "last_spinner_texts" not in st.session_state:
    st.session_state["last_spinner_texts"] = SpinnerTexts()

if "output_1" not in st.session_state:
    st.session_state["output_1"] = Image.open("highway2-yolov8m.jpg")

if "output_2" not in st.session_state:
    st.session_state["output_2"] = Image.open("highway2-sahi.jpg")

st.markdown(
    """
    <h2 style='text-align: center'>
    Small Object Detection <br />
    with SAHI + YOLOv8
    </h2>
    """,
    unsafe_allow_html=True,
)
# st.markdown(
#     """
#     <p style='text-align: center'>
#     <a href='https://github.com/obss/sahi' target='_blank'>SAHI Github</a> | <a href='https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox' target='_blank'>YOLOX Github</a> | <a href='https://huggingface.co/spaces/fcakyon/sahi-yolov5' target='_blank'>SAHI+YOLOv5 Demo</a>
#     <br />
#     Follow me for more! <a href='https://twitter.com/fcakyon' target='_blank'> <img src="https://img.icons8.com/color/48/000000/twitter--v1.png" height="30"></a><a href='https://github.com/fcakyon' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/github.png" height="27"></a><a href='https://www.linkedin.com/in/fcakyon/' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/linkedin.png" height="30"></a> <a href='https://fcakyon.medium.com/' target='_blank'><img src="https://img.icons8.com/ios-filled/48/000000/medium-monogram.png" height="26"></a>
#     </p>
#     """,
#     unsafe_allow_html=True,
# )

st.write("##")

with st.expander("Usage"):
    st.markdown(
        """
        <p>
        1. Upload or select the input image πŸ–ΌοΈ
        <br />
        2. (Optional) Set SAHI parameters βœ”οΈ
        <br />
        3. Press to "πŸš€ Perform Prediction"
        <br />
        4. Enjoy sliding image comparison πŸ”₯
        </p>
        """,
        unsafe_allow_html=True,
    )

st.write("##")

col1, col2, col3 = st.columns([6, 1, 6])
with col1:
    st.markdown(f"##### Set input image:")

    # set input image by upload
    image_file = st.file_uploader(
        "Upload an image to test:", type=["jpg", "jpeg", "png"]
    )

    # set input image from exapmles
    def slider_func(option):
        option_to_id = {
            "apple_tree.jpg": str(1),
            "highway.jpg": str(2),
            "highway2.jpg": str(3),
            "highway3.jpg": str(4),
        }
        return option_to_id[option]

    slider = st.select_slider(
        "Or select from example images:",
        options=["apple_tree.jpg", "highway.jpg", "highway2.jpg", "highway3.jpg"],
        format_func=slider_func,
        value="highway2.jpg",
    )

    # visualize input image
    if image_file is not None:
        image = Image.open(image_file)
    else:
        image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider])
    st.image(image, width=300)

with col3:
    st.markdown(f"##### Set SAHI parameters:")

    slice_size = st.number_input("slice_size", min_value=256, value=512, step=256)
    overlap_ratio = st.number_input(
        "overlap_ratio", min_value=0.0, max_value=0.6, value=0.2, step=0.2
    )
    #postprocess_type = st.selectbox(
    #    "postprocess_type", options=["NMS", "GREEDYNMM"], index=0
    #)
    #postprocess_match_metric = st.selectbox(
    #    "postprocess_match_metric", options=["IOU", "IOS"], index=0
    #)
    postprocess_match_threshold = st.number_input(
        "postprocess_match_threshold", value=0.5, step=0.1
    )
    #postprocess_class_agnostic = st.checkbox("postprocess_class_agnostic", value=True)

col1, col2, col3 = st.columns([4, 3, 4])
with col2:
    submit = st.button("πŸš€ Perform Prediction")

if submit:
    # perform prediction
    with st.spinner(
        text="Downloading model weight.. "
        + st.session_state["last_spinner_texts"].get()
    ):
        detection_model = get_model()

    image_size = 1280

    with st.spinner(
        text="Performing prediction.. " + st.session_state["last_spinner_texts"].get()
    ):
        output_1, output_2 = sahi_yolov8m_inference(
            image,
            detection_model,
            image_size=image_size,
            slice_height=slice_size,
            slice_width=slice_size,
            overlap_height_ratio=overlap_ratio,
            overlap_width_ratio=overlap_ratio,
            #postprocess_type=postprocess_type,
            #postprocess_match_metric=postprocess_match_metric,
            postprocess_match_threshold=postprocess_match_threshold,
            #postprocess_class_agnostic=postprocess_class_agnostic,
        )

    st.session_state["output_1"] = output_1
    st.session_state["output_2"] = output_2

st.markdown(f"##### YOLOv8 Standard vs SAHI Prediction:")
static_component = image_comparison(
    img1=st.session_state["output_1"],
    img2=st.session_state["output_2"],
    label1="YOLOX",
    label2="SAHI+YOLOX",
    width=700,
    starting_position=50,
    show_labels=True,
    make_responsive=True,
    in_memory=True,
)
# st.markdown(
#     """
#     <p style='text-align: center'>
#     prepared with <a href='https://github.com/fcakyon/streamlit-image-comparison' target='_blank'>streamlit-image-comparison</a>
#     </p>
#     """,
#     unsafe_allow_html=True,
# )