File size: 15,688 Bytes
95b1b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import numpy as np
from sklearn.cluster import AgglomerativeClustering, KMeans
from web.datasets.similarity import fetch_MEN, fetch_WS353, fetch_SimLex999, fetch_MTurk, fetch_RG65, fetch_RW, fetch_TR9856
from web.datasets.categorization import fetch_AP, fetch_battig, fetch_BLESS, fetch_ESSLI_1a, fetch_ESSLI_2b, \
    fetch_ESSLI_2c
from web.analogy import *
from six import iteritems
from web.embedding import Embedding
from web.evaluate import calculate_purity, evaluate_categorization, evaluate_on_semeval_2012_2, evaluate_analogy, \
evaluate_on_WordRep, evaluate_similarity

def evaluate_similarity_pearson(w, X, y):
    """
    Calculate Pearson correlation between cosine similarity of the model
    and human rated similarity of word pairs
    Parameters
    ----------
    w : Embedding or dict
      Embedding or dict instance.
    X: array, shape: (n_samples, 2)
      Word pairs
    y: vector, shape: (n_samples,)
      Human ratings
    Returns
    -------
    cor: float
      Pearson correlation
    """
    if isinstance(w, dict):
        w = Embedding.from_dict(w)

    missing_words = 0
    words = w.vocabulary.word_id
    for query in X:
        for query_word in query:
            if query_word not in words:
                missing_words += 1
    if missing_words > 0:
        print("Missing {} words. Will replace them with mean vector".format(missing_words))

    new_x = []
    new_y = []
    for i in range(len(X)):
        if X[i, 0] in words and X[i, 1] in words:
            new_x.append(X[i])
            new_y.append(y[i])
    
    X = np.array(new_x)
    y = np.array(new_y)
    
    mean_vector = np.mean(w.vectors, axis=0, keepdims=True)
    A = np.vstack(list(w.get(word, mean_vector) for word in X[:, 0]))
    B = np.vstack(list(w.get(word, mean_vector) for word in X[:, 1]))
    scores = np.array([v1.dot(v2.T)/(np.linalg.norm(v1)*np.linalg.norm(v2)) for v1, v2 in zip(A, B)])
    return scipy.stats.pearsonr(scores, y.squeeze())

def evaluate_similarity(w, X, y):
    """
    Calculate Spearman correlation between cosine similarity of the model
    and human rated similarity of word pairs

    Parameters
    ----------
    w : Embedding or dict
      Embedding or dict instance.

    X: array, shape: (n_samples, 2)
      Word pairs

    y: vector, shape: (n_samples,)
      Human ratings

    Returns
    -------
    cor: float
      Spearman correlation
    """
    if isinstance(w, dict):
        w = Embedding.from_dict(w)

    missing_words = 0
    words = w.vocabulary.word_id
    for query in X:
        for query_word in query:
            if query_word not in words:
                missing_words += 1
#     if missing_words > 0:
#         print("Missing {} words. Will replace them with mean vector".format(missing_words))

    new_x = []
    new_y = []
    exist_cnt = 0
    
    for i in range(len(X)):
        if X[i, 0] in words and X[i, 1] in words:
            new_x.append(X[i])
            new_y.append(y[i])
            exist_cnt += 1
    
    print('exist {} in {}'.format(exist_cnt, len(X)))
    X = np.array(new_x)
    y = np.array(new_y)
    
    
    mean_vector = np.mean(w.vectors, axis=0, keepdims=True)
    A = np.vstack(w.get(word, mean_vector) for word in X[:, 0])
    B = np.vstack(w.get(word, mean_vector) for word in X[:, 1])
#     scores = np.array([v1.dot(v2.T)/(np.linalg.norm(v1)*np.linalg.norm(v2)) for v1, v2 in zip(A, B)])
    scores = np.array([v1.dot(v2.T) for v1, v2 in zip(A, B)])
    return scipy.stats.spearmanr(scores, y).correlation


def evaluate_simi(wv, w2i, vocab):
    wv_dict = dict()
    for w in vocab:
        wv_dict[w] = wv[w2i[w], :]
        
    if isinstance(wv_dict, dict):
        w = Embedding.from_dict(wv_dict)

    # Calculate results on similarity
    print("Calculating similarity benchmarks")
    similarity_tasks = {
        "WS353": fetch_WS353(),
        "RG65": fetch_RG65(),
#         "WS353R": fetch_WS353(which="relatedness"),
#         "WS353S": fetch_WS353(which="similarity"),
        "SimLex999": fetch_SimLex999(),
        "MTurk": fetch_MTurk(),
        "RW": fetch_RW(),
        "MEN": fetch_MEN(),
    }

#     similarity_results = {}

    for name, data in iteritems(similarity_tasks):
        print("Sample data from {}, num of samples: {} : pair \"{}\" and \"{}\" is assigned score {}".format(
            name, len(data.X), data.X[0][0], data.X[0][1], data.y[0]))
        score = evaluate_similarity(w, data.X, data.y)
        print("Spearman correlation of scores on {} {}".format(name, score))
#         score, p_value = evaluate_similarity_pearson(w, data.X, data.y)
#         print("Pearson correlation of scores on {} {}, p value: {}".format(name, score, p_value))

def evaluate_categorization(w, X, y, method="kmeans", seed=None):
    """
    Evaluate embeddings on categorization task.

    Parameters
    ----------
    w: Embedding or dict
      Embedding to test.

    X: vector, shape: (n_samples, )
      Vector of words.

    y: vector, shape: (n_samples, )
      Vector of cluster assignments.

    method: string, default: "all"
      What method to use. Possible values are "agglomerative", "kmeans", "all.
      If "agglomerative" is passed, method will fit AgglomerativeClustering (with very crude
      hyperparameter tuning to avoid overfitting).
      If "kmeans" is passed, method will fit KMeans.
      In both cases number of clusters is preset to the correct value.

    seed: int, default: None
      Seed passed to KMeans.

    Returns
    -------
    purity: float
      Purity of the best obtained clustering.

    Notes
    -----
    KMedoids method was excluded as empirically didn't improve over KMeans (for categorization
    tasks available in the package).
    """

    if isinstance(w, dict):
        w = Embedding.from_dict(w)

    assert method in ["all", "kmeans", "agglomerative"], "Uncrecognized method"

    mean_vector = np.mean(w.vectors, axis=0, keepdims=True)
    new_x = []
    new_y = []
    exist_cnt = 0
    
    for idx, word in enumerate(X.flatten()):
        if word in w :
            new_x.append(X[idx])
            new_y.append(y[idx])
            exist_cnt += 1
    
    print('exist {} in {}'.format(exist_cnt, len(X)))
    X = np.array(new_x)
    y = np.array(new_y)
    
    words = np.vstack([w.get(word, mean_vector) for word in X.flatten()])
    ids = np.random.RandomState(seed).choice(range(len(X)), len(X), replace=False)

    # Evaluate clustering on several hyperparameters of AgglomerativeClustering and
    # KMeans
    best_purity = 0

    if method == "all" or method == "agglomerative":
        best_purity = calculate_purity(y[ids], AgglomerativeClustering(n_clusters=len(set(y)),
                                                                       affinity="euclidean",
                                                                       linkage="ward").fit_predict(words[ids]))
        logger.debug("Purity={:.3f} using affinity={} linkage={}".format(best_purity, 'euclidean', 'ward'))
        for affinity in ["cosine", "euclidean"]:
            for linkage in ["average", "complete"]:
                purity = calculate_purity(y[ids], AgglomerativeClustering(n_clusters=len(set(y)),
                                                                          affinity=affinity,
                                                                          linkage=linkage).fit_predict(words[ids]))
                logger.debug("Purity={:.3f} using affinity={} linkage={}".format(purity, affinity, linkage))
                best_purity = max(best_purity, purity)

    if method == "all" or method == "kmeans":
        purity = calculate_purity(y[ids], KMeans(random_state=seed, n_init=10, n_clusters=len(set(y))).
                                  fit_predict(words[ids]))
        logger.debug("Purity={:.3f} using KMeans".format(purity))
        best_purity = max(purity, best_purity)

    return best_purity

def evaluate_cate(wv, w2i, vocab, method="all", seed=None):
    """
    method: string, default: "all"
      What method to use. Possible values are "agglomerative", "kmeans", "all.
      If "agglomerative" is passed, method will fit AgglomerativeClustering (with very crude
      hyperparameter tuning to avoid overfitting).
      If "kmeans" is passed, method will fit KMeans.
      In both cases number of clusters is preset to the correct value.
    seed: int, default: None
      Seed passed to KMeans.
    """
    wv_dict = dict()
    for w in vocab:
        wv_dict[w] = wv[w2i[w], :]
        
    if isinstance(wv_dict, dict):
        w = Embedding.from_dict(wv_dict)    
    
    # Calculate results on categorization
    print("Calculating categorization benchmarks")
    categorization_tasks = {
        "AP": fetch_AP(),
        "ESSLI_2c": fetch_ESSLI_2c(),
        "ESSLI_2b": fetch_ESSLI_2b(),
        "ESSLI_1a": fetch_ESSLI_1a(),
        "Battig": fetch_battig(),
        "BLESS": fetch_BLESS(),
    }

    categorization_results = {}

    # Calculate results using helper function
    for name, data in iteritems(categorization_tasks):
        print("Sample data from {}, num of samples: {} : \"{}\" is assigned class {}".format(
            name, len(data.X), data.X[0], data.y[0]))
        categorization_results[name] = evaluate_categorization(w, data.X, data.y, method=method, seed=None)
        print("Cluster purity on {} {}".format(name, categorization_results[name]))

def evaluate_analogy_google(W, vocab):
    """Evaluate the trained w vectors on a variety of tasks"""

    filenames = [
        'capital-common-countries.txt', 'capital-world.txt', 'currency.txt',
        'city-in-state.txt', 'family.txt', 'gram1-adjective-to-adverb.txt',
        'gram2-opposite.txt', 'gram3-comparative.txt', 'gram4-superlative.txt',
        'gram5-present-participle.txt', 'gram6-nationality-adjective.txt',
        'gram7-past-tense.txt', 'gram8-plural.txt', 'gram9-plural-verbs.txt',
        ]
    prefix = '/zf15/tw8cb/summer_2019/code/GloVe/eval/question-data/'

    # to avoid memory overflow, could be increased/decreased
    # depending on system and vocab size
    split_size = 100

    correct_sem = 0; # count correct semantic questions
    correct_syn = 0; # count correct syntactic questions
    correct_tot = 0 # count correct questions
    count_sem = 0; # count all semantic questions
    count_syn = 0; # count all syntactic questions
    count_tot = 0 # count all questions
    full_count = 0 # count all questions, including those with unknown words

    for i in range(len(filenames)):
        with open('%s/%s' % (prefix, filenames[i]), 'r') as f:
            full_data = [line.rstrip().split(' ') for line in f]
            full_count += len(full_data)
            data = [x for x in full_data if all(word in vocab for word in x)]

        indices = np.array([[vocab[word] for word in row] for row in data])
        ind1, ind2, ind3, ind4 = indices.T

        predictions = np.zeros((len(indices),))
        num_iter = int(np.ceil(len(indices) / float(split_size)))
        for j in range(num_iter):
            subset = np.arange(j*split_size, min((j + 1)*split_size, len(ind1)))

            pred_vec = (W[ind2[subset], :] - W[ind1[subset], :]
                +  W[ind3[subset], :])
            #cosine similarity if input W has been normalized
            dist = np.dot(W, pred_vec.T)

            for k in range(len(subset)):
                dist[ind1[subset[k]], k] = -np.Inf
                dist[ind2[subset[k]], k] = -np.Inf
                dist[ind3[subset[k]], k] = -np.Inf

            # predicted word index
            predictions[subset] = np.argmax(dist, 0).flatten()

        val = (ind4 == predictions) # correct predictions
        count_tot = count_tot + len(ind1)
        correct_tot = correct_tot + sum(val)
        if i < 5:
            count_sem = count_sem + len(ind1)
            correct_sem = correct_sem + sum(val)
        else:
            count_syn = count_syn + len(ind1)
            correct_syn = correct_syn + sum(val)

        print("%s:" % filenames[i])
        print('ACCURACY TOP1: %.2f%% (%d/%d)' %
            (np.mean(val) * 100, np.sum(val), len(val)))

    print('Questions seen/total: %.2f%% (%d/%d)' %
        (100 * count_tot / float(full_count), count_tot, full_count))
    print('Semantic accuracy: %.2f%%  (%i/%i)' %
        (100 * correct_sem / float(count_sem), correct_sem, count_sem))
    print('Syntactic accuracy: %.2f%%  (%i/%i)' %
        (100 * correct_syn / float(count_syn), correct_syn, count_syn))
    print('Total accuracy: %.2f%%  (%i/%i)' % (100 * correct_tot / float(count_tot), correct_tot, count_tot))


def evaluate_analogy_msr(W, vocab, file_name='EN-MSR.txt'):
    """Evaluate the trained word vectors on a variety of tasks"""

    prefix = '/zf15/tw8cb/summer_2019/code/GloVe/eval/question-data/'

    # to avoid memory overflow, could be increased/decreased
    # depending on system and vocab size
    split_size = 100

    correct_sem = 0; # count correct semantic questions
    correct_syn = 0; # count correct syntactic questions
    correct_tot = 0 # count correct questions
    count_sem = 0; # count all semantic questions
    count_syn = 0; # count all syntactic questions
    count_tot = 0 # count all questions
    full_count = 0 # count all questions, including those with unknown words

    with open('%s/%s' % (prefix, file_name), 'r') as f:
        full_data = []
        for line in f:
            tokens = line.rstrip().split(' ')
            full_data.append([tokens[0], tokens[1], tokens[2], tokens[4]])
        full_count += len(full_data)
        data = [x for x in full_data if all(word in vocab for word in x)]

    indices = np.array([[vocab[word] for word in row] for row in data])
    ind1, ind2, ind3, ind4 = indices.T

    predictions = np.zeros((len(indices),))
    num_iter = int(np.ceil(len(indices) / float(split_size)))
    for j in range(num_iter):
        subset = np.arange(j*split_size, min((j + 1)*split_size, len(ind1)))

        pred_vec = (W[ind2[subset], :] - W[ind1[subset], :]
            +  W[ind3[subset], :])
        #cosine similarity if input W has been normalized
        dist = np.dot(W, pred_vec.T)

        for k in range(len(subset)):
            dist[ind1[subset[k]], k] = -np.Inf
            dist[ind2[subset[k]], k] = -np.Inf
            dist[ind3[subset[k]], k] = -np.Inf

        # predicted word index
        predictions[subset] = np.argmax(dist, 0).flatten()

    val = (ind4 == predictions) # correct predictions
    count_tot = count_tot + len(ind1)
    correct_tot = correct_tot + sum(val)

#     print("%s:" % filenames[i])
    print(len(val))
    print('ACCURACY TOP1-MSR: %.2f%% (%d/%d)' %
        (np.mean(val) * 100, np.sum(val), len(val)))

def evaluate_analogy_semeval2012(w_dict):
    score = evaluate_on_semeval_2012_2(w_dict)['all']
    print("Analogy prediction accuracy on {} {}".format("SemEval2012", score))

def evaluate_ana(wv, w2i, vocab):
    W_norm = np.zeros(wv.shape)
    d = (np.sum(wv ** 2, 1) ** (0.5))
    W_norm = (wv.T / d).T
    
    evaluate_analogy_msr(W_norm, w2i)
    evaluate_analogy_google(W_norm, w2i)
    
    wv_dict = dict()
    for w in vocab:
        wv_dict[w] = W_norm[w2i[w], :]
        
    if isinstance(wv_dict, dict):
        w = Embedding.from_dict(wv_dict)
    evaluate_analogy_semeval2012(w)

#     analogy_tasks = {
#         "Google": fetch_google_analogy(),
#         "MSR": fetch_msr_analogy()
#     }

#     analogy_results = {}

#     for name, data in iteritems(analogy_tasks):
#         analogy_results[name] = evaluate_analogy(w, data.X, data.y)
#         print("Analogy prediction accuracy on {} {}".format(name, analogy_results[name]))