Spaces:
Runtime error
Runtime error
File size: 6,885 Bytes
834975a 7860256 834975a bfe5c5c 834975a b12d155 834975a 7860256 b12d155 834975a b12d155 834975a b12d155 834975a 7860256 834975a b12d155 834975a 3cb3b8c 834975a 3cb3b8c 834975a b12d155 834975a 3cb3b8c 834975a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import requests
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import numpy as np
import threading
import gradio as gr
import re
from bs4 import BeautifulSoup
from markdown import markdown
import nltk
from nltk.tokenize import sent_tokenize
import string
import unicodedata
import time
nltk.download('punkt')
POST_ID = 0
REFERENDUM_TYPE = "referendums_v2"
VOTE_TYPE = "ReferendumV2" # "Motion", "Fellowship", "Referendum", "ReferendumV2", "DemocracyProposal"
UPDATE_INTERVAL = 1800
def dot_product(u, v):
res = np.dot(u, v)
return res
def markdn_2_str(text):
html = markdown(text)
clean_text = ' '.join(BeautifulSoup(html, features="html.parser").findAll(string=True))
markdown_link_pattern = re.compile(r'\[.*?\]\(.*?\)')
url_pattern = re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+')
clean_text = re.sub(markdown_link_pattern, ' ', clean_text) # remove markdown style links
clean_text = re.sub(url_pattern, ' ', clean_text) # remove regular links
clean_text = clean_text.replace('\n', ' ') # remove \n
return clean_text
def get_sum(prop):
key_word = "KSM"
pattern = re.compile(r'(\d)')
search_phrases = [
"requests a total of 1500 KSM",
"requests a total of 7450 $ (17 KSM)",
"Requested amount: 3,333 KSM",
"Requested funding 78,804 USD // 2770 KSM",
"Requested KSM: 598"
]
ref = model.encode("".join(search_phrases), convert_to_tensor=True)
prop = unicodedata.normalize("NFKD", prop)
prop = markdn_2_str(prop)
sentences = sent_tokenize(prop)
similarities = []
for s in sentences:
sentence_embedding = model.encode(s, convert_to_tensor=True)
similarities.append(-dot_product(sentence_embedding, ref))
max_similarity_index = np.argsort(similarities)
sent = next((sentences[i] for i in max_similarity_index if "KSM" in sentences[i]), "None")
s = re.split(r'(\s)', sent)
s = [x.translate(str.maketrans('', '', string.punctuation)) if not pattern.search(x) else x for x in s]
s = [x for x in s if x != ' ']
s = [x for x in s if x != '']
try:
index_KSM = [idx for idx, val in enumerate(s) if "KSM" in val]
for el in index_KSM:
l = s[el - 1:el + 2]
for x in l:
if pattern.search(x):
return x
except Exception:
return None
def get_proposals():
global POST_ID
global df
flag = True
while flag:
rn = requests.post(
f"https://api.polkassembly.io/api/v1/posts/on-chain-post?proposalType={REFERENDUM_TYPE}&postId={POST_ID}",
headers={"x-network": "kusama"})
if rn.ok:
print(POST_ID)
proposal_data = rn.json()
line = [proposal_data.get("content"), proposal_data.get("status"), get_sum(proposal_data.get("content"))]
df.loc[POST_ID] = line
POST_ID += 1
else:
event.set()
flag = False
def get_embeddings():
global df_emb
for i in range(len(df)):
df_emb.loc[i] = model.encode(markdn_2_str(df.iloc[i]['content']))
def update_proposals():
global POST_ID
global df
flag = True
while flag:
rn = requests.post(
f"https://api.polkassembly.io/api/v1/posts/on-chain-post?proposalType={REFERENDUM_TYPE}&postId={POST_ID}",
headers={"x-network": "kusama"})
if rn.ok:
proposal_data = rn.json()
line = [proposal_data.get("content"), proposal_data.get("status"), get_sum(proposal_data.get("content"))]
df.loc[POST_ID] = line
POST_ID += 1
else:
print('proposals updated at {t}'.format(t=time.strftime("%H:%M:%S", time.localtime())))
df.to_excel('df.xlsx', index=False)
event.set()
flag = False
def update_embeddings():
global df_emb
while True:
event.wait()
if len(df) != len(df_emb):
id_to_add = [x + len(df_emb) for x in range(len(df) - len(df_emb))]
for i in id_to_add:
print(model.encode(markdn_2_str(df.iloc[i])))
print(len(model.encode(markdn_2_str(df.iloc[i]))))
df_emb.loc[i] = model.encode(markdn_2_str(df.iloc[i]))
else:
event.clear()
df_emb.to_csv('df_emb.csv', index=False)
def run_periodically():
update_proposals()
threading.Timer(UPDATE_INTERVAL, run_periodically).start()
def compare_proposals(prop, count):
query_emb = model.encode(markdn_2_str(prop))
new_df = pd.DataFrame(columns=['sim1'])
new_df['sim1'] = df_emb.apply(lambda row: dot_product(row, query_emb), axis=1)
best_match = np.argsort(-new_df['sim1'])[0:count]
res = [df.iloc[x]['content'] for x in best_match]
stat = [df.iloc[x]['status'] for x in best_match]
ksm = [df.iloc[x]['ksm'] for x in best_match]
title = [
'''<span style="color:blue"><h2>Total KSM requested: {sum}, status: {status}, ID: {id}</h2></span> \n '''.format(
sum=x, status=y, id=z) for x, y, z in zip(ksm, stat, best_match)]
result = "\n ".join([a + b for a, b in zip(title, res)])
return result
if __name__ == '__main__':
print('start')
event = threading.Event()
model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
print('model downloaded')
df = pd.DataFrame(columns=['content', 'status', 'ksm'])
df_emb = pd.DataFrame(columns=range(768))
print(df_emb)
df = pd.read_excel('df.xlsx')
df_emb = pd.read_csv('df_emb.csv')
df = df.loc[:, ['content', 'status', 'ksm']]
# get_proposals()
# get_embeddings()
# df.to_excel('df.xlsx', index=False)
# df_emb.to_csv('df_emb.csv', index=False)
POST_ID = len(df)
update_thread = threading.Thread(target=run_periodically) # background proposals update
upd_emb_thread = threading.Thread(target=update_embeddings) # background embeddings update
update_thread.start()
upd_emb_thread.start()
print('gradio start')
with gr.Blocks() as demo:
gr.Markdown("<h1>Compare proposals</h1>")
inpt = gr.Textbox(label="Input Proposal", lines=5, max_lines=12)
dr = gr.Dropdown(label="Vote type",
choices=["Motion", "Fellowship", "Referendum", "ReferendumV2", "DemocracyProposal"],
value="ReferendumV2", interactive=True)
slider = gr.Slider(label="Number of proposals to output", minimum=1, maximum=20, step=1, value=5,
interactive=True)
btn = gr.Button("Find similar proposals")
otpt = gr.Markdown("")
btn.click(fn=compare_proposals, inputs=[inpt, slider], outputs=otpt)
demo.launch(show_error=True)
|