File size: 7,146 Bytes
874197b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import torch
from diffusers import MusicLDMPipeline


# make Space compatible with CPU duplicates
if torch.cuda.is_available():
    device = "cuda"
    torch_dtype = torch.float16
else:
    device = "cpu"
    torch_dtype = torch.float32

# load the diffusers pipeline
pipe = MusicLDMPipeline.from_pretrained("cvssp/musicldm", torch_dtype=torch_dtype).to(device)

# set the generator for reproducibility
generator = torch.Generator(device)


def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates):
    if text is None:
        raise gr.Error("Please provide a text input.")

    waveforms = pipe(
        text,
        audio_length_in_s=duration,
        guidance_scale=guidance_scale,
        num_inference_steps=200,
        negative_prompt=negative_prompt,
        num_waveforms_per_prompt=n_candidates if n_candidates else 1,
        generator=generator.manual_seed(int(random_seed)),
    )["audios"]

    return gr.make_waveform((16000, waveforms[0]), bg_image="bg.png")


iface = gr.Blocks()

with iface:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                  MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies
                </h1>
              </div> <p style="margin-bottom: 10px; font-size: 94%">
                <a href="https://arxiv.org/abs/2308.01546">[Paper]</a> <a href="https://musicldm.github.io/">[Project
                page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/musicldm">[🧨
                Diffusers]</a>
              </p>
            </div>
        """
    )
    gr.HTML("""This is the demo for MusicLDM, powered by 🧨 Diffusers. Demo uses the base checkpoint <a
        href="https://huggingface.co/ircam-reach/musicldm"> ircam-reach/musicldm </a>. For faster inference without waiting in
        queue, you may want to duplicate the space and upgrade to a GPU in the settings.""")
    gr.DuplicateButton()

    with gr.Group():
        textbox = gr.Textbox(
            value="Western music, chill out, folk instrument R & B beat",
            max_lines=1,
            label="Input text",
            info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.",
            elem_id="prompt-in",
        )
        negative_textbox = gr.Textbox(
            value="low quality, average quality",
            max_lines=1,
            label="Negative prompt",
            info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.",
            elem_id="prompt-in",
        )

        with gr.Accordion("Click to modify detailed configurations", open=False):
            seed = gr.Number(
                value=42,
                label="Seed",
                info="Change this value (any integer number) will lead to a different generation result.",
            )
            duration = gr.Slider(5, 15, value=10, step=2.5, label="Duration (seconds)")
            guidance_scale = gr.Slider(
                0,
                7,
                value=3.5,
                step=0.5,
                label="Guidance scale",
                info="Larger => better quality and relevancy to text; Smaller => better diversity",
            )
            n_candidates = gr.Slider(
                1,
                5,
                value=3,
                step=1,
                label="Number waveforms to generate",
                info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A larger value usually lead to better quality with heavier computation",
            )

        outputs = gr.Video(label="Output", elem_id="output-video")
        btn = gr.Button("Submit")

    btn.click(
        text2audio,
        inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
        outputs=[outputs],
    )

    gr.HTML(
        """
    <div class="footer" style="text-align: center">
        <p>Share your generations with the community by clicking the share icon at the top right the generated audio!</p>
        <p>Follow the latest updates of MusicLDM on our<a href="https://musicldm.github.io/"
        style="text-decoration: underline;" target="_blank"> project page </a> </p> 
        <p>Model by <a
        href="https://www.knutchen.com" style="text-decoration: underline;" target="_blank">Ke Chen</a>. Code and demo by 🤗 Hugging Face.</p>
    </div>
    """
    )
    gr.Examples(
        [
            ["Light rhythm techno", "low quality, average quality", 10, 3.5, 42, 3],
            ["Futuristic drum and bass", "low quality, average quality", 10, 3.5, 42, 3],
            ["Royal Film Music Orchestra", "low quality, average quality", 10, 3.5, 42, 3],
            ["Elegant and gentle tunes of string quartet + harp", "low quality, average quality", 10, 3.5, 42, 3],
            ["A fantastic piece of music with the deep sound of overlapping pianos", "low quality, average quality", 10, 3.5, 42, 3],
            ["Gentle live acoustic guitar", "low quality, average quality", 10, 3.5, 42, 3],
            ["Lyrical ballad played by saxophone", "low quality, average quality", 10, 3.5, 42, 3],
        ],
        fn=text2audio,
        inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
        outputs=[outputs],
        cache_examples=True,
    )
    gr.HTML(
        """
            <div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated
            Audio</p>
            <p>1. Try using more adjectives to describe your sound. For example: "Techno music with high melodic 
            riffs and euphoric melody" is better than "Techno".</p>
            <p>2. Try using different random seeds, which can significantly affect the quality of the generated 
            output.</p>
            <p>3. It's better to use general terms like 'techno' or 'jazz' instead of specific names for genres, 
            artists or styles that the model may not be familiar with.</p>
            <p>4. Using a negative prompt to not guide the diffusion process can improve the
            audio quality significantly. Try using negative prompts like 'low quality'.</p>
            </div>
            """
    )
    with gr.Accordion("Additional information", open=False):
        gr.HTML(
            """
            <div class="acknowledgments">
                <p> We build the model with data from the <a href="https://audiostock.net//">Audiostock</a>,
                dataset. The model is licensed as CC-BY-NC-4.0.
                </p>
            </div>
            """
        )

iface.queue(max_size=20).launch()