File size: 742 Bytes
0e6b615
 
 
bdc9445
0e6b615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import torchvision
import torch
import torch.nn as nn
def create_effnetb2_model(num_classes: int=3, seed: int=42):
    # 1, 2, 3. Create EffNetB2 pretrained weights, transforms and model
    weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
    transforms = weights.transforms()
    model = torchvision.models.efficientnet_b2(weights=weights)

    #4 Freeze all layers in base model
    for param in model.parameters():
        param.requires_grad = False

    # 5. Change classifier head with random seed for reproducibility
    torch.manual_seed(seed)
    model.classifier = nn.Sequential(
        nn.Dropout(p=0.3, inplace=True),
        nn.Linear(in_features=1408, out_features=num_classes)
    )

    return model, transforms