Spaces:
Sleeping
Sleeping
File size: 39,204 Bytes
91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 8364708 91cfe57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 |
"""
Doctra - Document Parser for Hugging Face Spaces
This is a Hugging Face Spaces deployment of the Doctra document parsing library.
It provides a comprehensive web interface for PDF parsing, table/chart extraction,
image restoration, and enhanced document processing.
"""
import os
import shutil
import tempfile
import re
import html as _html
import base64
import json
from pathlib import Path
from typing import Optional, Tuple, List, Dict, Any
import gradio as gr
import pandas as pd
# Mock google.genai to avoid import errors
import sys
from unittest.mock import MagicMock
# Create a mock google.genai module
mock_google_genai = MagicMock()
sys.modules['google.genai'] = mock_google_genai
sys.modules['google.genai.types'] = MagicMock()
# Now import Doctra components
try:
from doctra.parsers.structured_pdf_parser import StructuredPDFParser
from doctra.parsers.table_chart_extractor import ChartTablePDFParser
from doctra.parsers.enhanced_pdf_parser import EnhancedPDFParser
from doctra.ui.docres_wrapper import DocResUIWrapper
from doctra.utils.pdf_io import render_pdf_to_images
except ImportError as e:
print(f"Warning: Some Doctra components may not be available: {e}")
# Create mock classes if imports fail
StructuredPDFParser = None
ChartTablePDFParser = None
EnhancedPDFParser = None
DocResUIWrapper = None
render_pdf_to_images = None
# UI Theme and Styling Constants
THEME = gr.themes.Soft(primary_hue="indigo", neutral_hue="slate")
CUSTOM_CSS = """
/* Full-width layout */
.gradio-container {max-width: 100% !important; padding-left: 24px; padding-right: 24px}
.container {max-width: 100% !important}
.app {max-width: 100% !important}
/* Header and helpers */
.header {margin-bottom: 8px}
.subtitle {color: var(--body-text-color-subdued)}
.card {border:1px solid var(--border-color); border-radius:12px; padding:8px}
.status-ok {color: var(--color-success)}
/* Scrollable gallery styling */
.scrollable-gallery {
max-height: 600px !important;
overflow-y: auto !important;
border: 1px solid var(--border-color) !important;
border-radius: 8px !important;
padding: 8px !important;
}
/* Page content styling */
.page-content img {
max-width: 100% !important;
height: auto !important;
display: block !important;
margin: 10px auto !important;
border: 1px solid #ddd !important;
border-radius: 8px !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.1) !important;
}
.page-content {
max-height: none !important;
overflow: visible !important;
}
/* Table styling */
.page-content table.doc-table {
width: 100% !important;
border-collapse: collapse !important;
margin: 12px 0 !important;
}
.page-content table.doc-table th,
.page-content table.doc-table td {
border: 1px solid #e5e7eb !important;
padding: 8px 10px !important;
text-align: left !important;
}
.page-content table.doc-table thead th {
background: #f9fafb !important;
font-weight: 600 !important;
}
.page-content table.doc-table tbody tr:nth-child(even) td {
background: #fafafa !important;
}
/* Clickable image buttons */
.image-button {
background: #0066cc !important;
color: white !important;
border: none !important;
padding: 5px 10px !important;
border-radius: 4px !important;
cursor: pointer !important;
margin: 2px !important;
font-size: 14px !important;
}
.image-button:hover {
background: #0052a3 !important;
}
"""
def gather_outputs(
out_dir: Path,
allowed_kinds: Optional[List[str]] = None,
zip_filename: Optional[str] = None,
is_structured_parsing: bool = False
) -> Tuple[List[tuple[str, str]], List[str], str]:
"""
Gather output files and create a ZIP archive for download.
"""
gallery_items: List[tuple[str, str]] = []
file_paths: List[str] = []
if out_dir.exists():
if is_structured_parsing:
# For structured parsing, include all files
for file_path in sorted(out_dir.rglob("*")):
if file_path.is_file():
file_paths.append(str(file_path))
else:
# For full parsing, include specific main files
main_files = [
"result.html",
"result.md",
"tables.html",
"tables.xlsx"
]
for main_file in main_files:
file_path = out_dir / main_file
if file_path.exists():
file_paths.append(str(file_path))
# Include images based on allowed kinds
if allowed_kinds:
for kind in allowed_kinds:
p = out_dir / kind
if p.exists():
for img in sorted(p.glob("*.png")):
file_paths.append(str(img))
images_dir = out_dir / "images" / kind
if images_dir.exists():
for img in sorted(images_dir.glob("*.jpg")):
file_paths.append(str(img))
else:
# Include all images if no specific kinds specified
for p in (out_dir / "charts").glob("*.png"):
file_paths.append(str(p))
for p in (out_dir / "tables").glob("*.png"):
file_paths.append(str(p))
for p in (out_dir / "images").rglob("*.jpg"):
file_paths.append(str(p))
# Include Excel files based on allowed kinds
if allowed_kinds:
if "charts" in allowed_kinds and "tables" in allowed_kinds:
excel_files = ["parsed_tables_charts.xlsx"]
elif "charts" in allowed_kinds:
excel_files = ["parsed_charts.xlsx"]
elif "tables" in allowed_kinds:
excel_files = ["parsed_tables.xlsx"]
else:
excel_files = []
for excel_file in excel_files:
excel_path = out_dir / excel_file
if excel_path.exists():
file_paths.append(str(excel_path))
# Build gallery items for image display
kinds = allowed_kinds if allowed_kinds else ["tables", "charts", "figures"]
for sub in kinds:
p = out_dir / sub
if p.exists():
for img in sorted(p.glob("*.png")):
gallery_items.append((str(img), f"{sub}: {img.name}"))
images_dir = out_dir / "images" / sub
if images_dir.exists():
for img in sorted(images_dir.glob("*.jpg")):
gallery_items.append((str(img), f"{sub}: {img.name}"))
# Create ZIP archive
tmp_zip_dir = Path(tempfile.mkdtemp(prefix="doctra_zip_"))
if zip_filename:
safe_filename = re.sub(r'[<>:"/\\|?*]', '_', zip_filename)
zip_base = tmp_zip_dir / safe_filename
else:
zip_base = tmp_zip_dir / "doctra_outputs"
filtered_dir = tmp_zip_dir / "filtered_outputs"
shutil.copytree(out_dir, filtered_dir, ignore=shutil.ignore_patterns('~$*', '*.tmp', '*.temp'))
zip_path = shutil.make_archive(str(zip_base), 'zip', root_dir=str(filtered_dir))
return gallery_items, file_paths, zip_path
def validate_vlm_config(use_vlm: bool, vlm_api_key: str, vlm_provider: str = "gemini") -> Optional[str]:
"""
Validate VLM configuration parameters.
"""
if use_vlm and vlm_provider not in ["ollama"] and not vlm_api_key:
return "β Error: VLM API key is required when using VLM (except for Ollama)"
if use_vlm and vlm_api_key and vlm_provider not in ["ollama"]:
# Basic API key validation
if len(vlm_api_key.strip()) < 10:
return "β Error: VLM API key appears to be too short or invalid"
if vlm_api_key.strip().startswith('sk-') and len(vlm_api_key.strip()) < 20:
return "β Error: OpenAI API key appears to be invalid (too short)"
return None
def create_page_html_content(page_content: List[str], base_dir: Optional[Path] = None) -> str:
"""
Convert page content lines to HTML with inline images and proper formatting.
"""
processed_content = []
paragraph_buffer = []
def flush_paragraph():
"""Flush accumulated paragraph content to HTML"""
nonlocal paragraph_buffer
if paragraph_buffer:
joined = '<br/>'.join(_html.escape(l) for l in paragraph_buffer)
processed_content.append(f'<p>{joined}</p>')
paragraph_buffer = []
def is_markdown_table_header(s: str) -> bool:
return '|' in s and ('---' in s or 'β' in s)
def render_markdown_table(lines: List[str]) -> str:
rows = [l.strip().strip('|').split('|') for l in lines]
rows = [[_html.escape(c.strip()) for c in r] for r in rows]
if len(rows) < 2:
return ""
header = rows[0]
body = rows[2:] if len(rows) > 2 else []
thead = '<thead><tr>' + ''.join(f'<th>{c}</th>' for c in header) + '</tr></thead>'
tbody = '<tbody>' + ''.join('<tr>' + ''.join(f'<td>{c}</td>' for c in r) + '</tr>' for r in body) + '</tbody>'
return f'<table class="doc-table">{thead}{tbody}</table>'
i = 0
n = len(page_content)
while i < n:
raw_line = page_content[i]
line = raw_line.rstrip('\r\n')
stripped = line.strip()
# Handle image references
if stripped.startswith(':
flush_paragraph()
match = re.match(r'!\[([^\]]+)\]\(([^)]+)\)', stripped)
if match and base_dir is not None:
caption = match.group(1)
rel_path = match.group(2).replace('\\\\', '/').replace('\\', '/').lstrip('/')
abs_path = (base_dir / rel_path).resolve()
try:
with open(abs_path, 'rb') as f:
b64 = base64.b64encode(f.read()).decode('ascii')
processed_content.append(f'<figure><img src="data:image/jpeg;base64,{b64}" alt="{_html.escape(caption)}"/><figcaption>{_html.escape(caption)}</figcaption></figure>')
except Exception as e:
print(f"β Failed to embed image {rel_path}: {e}")
processed_content.append(f'<div>{_html.escape(caption)} (image not found)</div>')
else:
processed_content.append(f'<div>{_html.escape(stripped)}</div>')
i += 1
continue
# Handle markdown tables
if (stripped.startswith('|') or stripped.count('|') >= 2) and i + 1 < n and is_markdown_table_header(page_content[i + 1]):
flush_paragraph()
table_block = [stripped]
i += 1
table_block.append(page_content[i].strip())
i += 1
while i < n:
nxt = page_content[i].rstrip('\r\n')
if nxt.strip() == '' or (not nxt.strip().startswith('|') and nxt.count('|') < 2):
break
table_block.append(nxt.strip())
i += 1
html_table = render_markdown_table(table_block)
if html_table:
processed_content.append(html_table)
else:
for tl in table_block:
paragraph_buffer.append(tl)
continue
# Handle headers and content
if stripped.startswith('## '):
flush_paragraph()
processed_content.append(f'<h3>{_html.escape(stripped[3:])}</h3>')
elif stripped.startswith('# '):
flush_paragraph()
processed_content.append(f'<h2>{_html.escape(stripped[2:])}</h2>')
elif stripped == '':
flush_paragraph()
processed_content.append('<br/>')
else:
paragraph_buffer.append(raw_line)
i += 1
flush_paragraph()
return "\n".join(processed_content)
def run_full_parse(
pdf_file: str,
use_vlm: bool,
vlm_provider: str,
vlm_api_key: str,
layout_model_name: str,
dpi: int,
min_score: float,
ocr_lang: str,
ocr_psm: int,
ocr_oem: int,
ocr_extra_config: str,
box_separator: str,
) -> Tuple[str, Optional[str], List[tuple[str, str]], List[str], str]:
"""Run full PDF parsing with structured output."""
if not pdf_file:
return ("No file provided.", None, [], [], "")
# Check if Doctra components are available
if StructuredPDFParser is None:
return ("β Error: Doctra library not properly installed. Please check the requirements.", None, [], [], "")
# Validate VLM configuration
vlm_error = validate_vlm_config(use_vlm, vlm_api_key, vlm_provider)
if vlm_error:
return (vlm_error, None, [], [], "")
original_filename = Path(pdf_file).stem
# Create temporary directory for processing
tmp_dir = Path(tempfile.mkdtemp(prefix="doctra_"))
input_pdf = tmp_dir / f"{original_filename}.pdf"
shutil.copy2(pdf_file, input_pdf)
# Initialize parser with configuration
parser = StructuredPDFParser(
use_vlm=use_vlm,
vlm_provider=vlm_provider,
vlm_api_key=vlm_api_key or None,
layout_model_name=layout_model_name,
dpi=int(dpi),
min_score=float(min_score),
ocr_lang=ocr_lang,
ocr_psm=int(ocr_psm),
ocr_oem=int(ocr_oem),
ocr_extra_config=ocr_extra_config or "",
box_separator=box_separator or "\n",
)
try:
parser.parse(str(input_pdf))
except Exception as e:
import traceback
traceback.print_exc()
try:
error_msg = str(e).encode('utf-8', errors='replace').decode('utf-8')
return (f"β VLM processing failed: {error_msg}", None, [], [], "")
except Exception:
return (f"β VLM processing failed: <Unicode encoding error>", None, [], [], "")
# Find output directory
outputs_root = Path("outputs")
out_dir = outputs_root / original_filename / "full_parse"
if not out_dir.exists():
candidates = sorted(outputs_root.glob("*/"), key=lambda p: p.stat().st_mtime, reverse=True)
if candidates:
out_dir = candidates[0] / "full_parse"
else:
out_dir = outputs_root
# Read markdown file if it exists
md_file = next(out_dir.glob("*.md"), None)
md_preview = None
if md_file and md_file.exists():
try:
with md_file.open("r", encoding="utf-8", errors="ignore") as f:
md_preview = f.read()
except Exception:
md_preview = None
# Gather output files and create ZIP
gallery_items, file_paths, zip_path = gather_outputs(
out_dir,
zip_filename=original_filename,
is_structured_parsing=False
)
return (
f"β
Parsing completed successfully!\nπ Output directory: {out_dir}",
md_preview,
gallery_items,
file_paths,
zip_path
)
def run_extract(
pdf_file: str,
target: str,
use_vlm: bool,
vlm_provider: str,
vlm_api_key: str,
layout_model_name: str,
dpi: int,
min_score: float,
) -> Tuple[str, str, List[tuple[str, str]], List[str], str]:
"""Run table/chart extraction from PDF."""
if not pdf_file:
return ("No file provided.", "", [], [], "")
# Check if Doctra components are available
if ChartTablePDFParser is None:
return ("β Error: Doctra library not properly installed. Please check the requirements.", "", [], [], "")
# Validate VLM configuration
vlm_error = validate_vlm_config(use_vlm, vlm_api_key, vlm_provider)
if vlm_error:
return (vlm_error, "", [], [], "")
original_filename = Path(pdf_file).stem
# Create temporary directory for processing
tmp_dir = Path(tempfile.mkdtemp(prefix="doctra_"))
input_pdf = tmp_dir / f"{original_filename}.pdf"
shutil.copy2(pdf_file, input_pdf)
# Initialize parser with configuration
parser = ChartTablePDFParser(
extract_charts=(target in ("charts", "both")),
extract_tables=(target in ("tables", "both")),
use_vlm=use_vlm,
vlm_provider=vlm_provider,
vlm_api_key=vlm_api_key or None,
layout_model_name=layout_model_name,
dpi=int(dpi),
min_score=float(min_score),
)
# Run extraction
output_base = Path("outputs")
parser.parse(str(input_pdf), str(output_base))
# Find output directory
outputs_root = output_base
out_dir = outputs_root / original_filename / "structured_parsing"
if not out_dir.exists():
if outputs_root.exists():
candidates = sorted(outputs_root.glob("*/"), key=lambda p: p.stat().st_mtime, reverse=True)
if candidates:
out_dir = candidates[0] / "structured_parsing"
else:
out_dir = outputs_root
else:
outputs_root.mkdir(parents=True, exist_ok=True)
out_dir = outputs_root
# Determine which kinds to include in outputs based on target selection
allowed_kinds: Optional[List[str]] = None
if target in ("tables", "charts"):
allowed_kinds = [target]
elif target == "both":
allowed_kinds = ["tables", "charts"]
# Gather output files and create ZIP
gallery_items, file_paths, zip_path = gather_outputs(
out_dir,
allowed_kinds,
zip_filename=original_filename,
is_structured_parsing=True
)
# Build tables HTML preview from Excel data (when VLM enabled)
tables_html = ""
try:
if use_vlm:
# Find Excel file based on target
excel_filename = None
if target in ("tables", "charts"):
if target == "tables":
excel_filename = "parsed_tables.xlsx"
else: # charts
excel_filename = "parsed_charts.xlsx"
elif target == "both":
excel_filename = "parsed_tables_charts.xlsx"
if excel_filename:
excel_path = out_dir / excel_filename
if excel_path.exists():
# Read Excel file and create HTML tables
xl_file = pd.ExcelFile(excel_path)
html_blocks = []
for sheet_name in xl_file.sheet_names:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
if not df.empty:
# Create table with title
title = f"<h3>{_html.escape(sheet_name)}</h3>"
# Convert DataFrame to HTML table
table_html = df.to_html(
classes="doc-table",
table_id=None,
escape=True,
index=False,
na_rep=""
)
html_blocks.append(title + table_html)
tables_html = "\n".join(html_blocks)
except Exception as e:
try:
error_msg = str(e).encode('utf-8', errors='replace').decode('utf-8')
print(f"Error building tables HTML: {error_msg}")
except Exception:
print(f"Error building tables HTML: <Unicode encoding error>")
tables_html = ""
return (
f"β
Parsing completed successfully!\nπ Output directory: {out_dir}",
tables_html,
gallery_items,
file_paths,
zip_path
)
def run_docres_restoration(
pdf_file: str,
task: str,
device: str,
dpi: int,
save_enhanced: bool,
save_images: bool
) -> Tuple[str, Optional[str], Optional[str], Optional[dict], List[str]]:
"""Run DocRes image restoration on PDF."""
if not pdf_file:
return ("No file provided.", None, None, None, [])
# Check if Doctra components are available
if DocResUIWrapper is None:
return ("β Error: Doctra library not properly installed. Please check the requirements.", None, None, None, [])
try:
# Initialize DocRes engine
device_str = None if device == "auto" else device
docres = DocResUIWrapper(device=device_str)
# Extract filename
original_filename = Path(pdf_file).stem
# Create output directory
output_dir = Path("outputs") / f"{original_filename}_docres"
output_dir.mkdir(parents=True, exist_ok=True)
# Run DocRes restoration
enhanced_pdf_path = output_dir / f"{original_filename}_enhanced.pdf"
docres.restore_pdf(
pdf_path=pdf_file,
output_path=str(enhanced_pdf_path),
task=task,
dpi=dpi
)
# Prepare outputs
file_paths = []
if save_enhanced and enhanced_pdf_path.exists():
file_paths.append(str(enhanced_pdf_path))
if save_images:
# Look for enhanced images
images_dir = output_dir / "enhanced_images"
if images_dir.exists():
for img_path in sorted(images_dir.glob("*.jpg")):
file_paths.append(str(img_path))
# Create metadata
metadata = {
"task": task,
"device": str(docres.device),
"dpi": dpi,
"original_file": pdf_file,
"enhanced_file": str(enhanced_pdf_path) if enhanced_pdf_path.exists() else None,
"output_directory": str(output_dir)
}
status_msg = f"β
DocRes restoration completed successfully!\nπ Output directory: {output_dir}"
enhanced_pdf_file = str(enhanced_pdf_path) if enhanced_pdf_path.exists() else None
return (status_msg, pdf_file, enhanced_pdf_file, metadata, file_paths)
except Exception as e:
error_msg = f"β DocRes restoration failed: {str(e)}"
return (error_msg, None, None, None, [])
def run_enhanced_parse(
pdf_file: str,
use_image_restoration: bool,
restoration_task: str,
restoration_device: str,
restoration_dpi: int,
use_vlm: bool,
vlm_provider: str,
vlm_api_key: str,
layout_model_name: str,
dpi: int,
min_score: float,
ocr_lang: str,
ocr_psm: int,
ocr_oem: int,
ocr_extra_config: str,
box_separator: str,
) -> Tuple[str, Optional[str], List[str], str, Optional[str], Optional[str], str]:
"""Run enhanced PDF parsing with DocRes image restoration."""
if not pdf_file:
return ("No file provided.", None, [], "", None, None, "")
# Check if Doctra components are available
if EnhancedPDFParser is None:
return ("β Error: Doctra library not properly installed. Please check the requirements.", None, [], "", None, None, "")
# Validate VLM configuration if VLM is enabled
if use_vlm:
vlm_error = validate_vlm_config(use_vlm, vlm_api_key, vlm_provider)
if vlm_error:
return (vlm_error, None, [], "", None, None, "")
original_filename = Path(pdf_file).stem
# Create temporary directory for processing
tmp_dir = Path(tempfile.mkdtemp(prefix="doctra_enhanced_"))
input_pdf = tmp_dir / f"{original_filename}.pdf"
shutil.copy2(pdf_file, input_pdf)
try:
# Initialize enhanced parser with configuration
parser = EnhancedPDFParser(
use_image_restoration=use_image_restoration,
restoration_task=restoration_task,
restoration_device=restoration_device if restoration_device != "auto" else None,
restoration_dpi=int(restoration_dpi),
use_vlm=use_vlm,
vlm_provider=vlm_provider,
vlm_api_key=vlm_api_key or None,
layout_model_name=layout_model_name,
dpi=int(dpi),
min_score=float(min_score),
ocr_lang=ocr_lang,
ocr_psm=int(ocr_psm),
ocr_oem=int(ocr_oem),
ocr_extra_config=ocr_extra_config or "",
box_separator=box_separator or "\n",
)
# Parse the PDF with enhancement
parser.parse(str(input_pdf))
except Exception as e:
import traceback
traceback.print_exc()
try:
error_msg = str(e).encode('utf-8', errors='replace').decode('utf-8')
return (f"β Enhanced parsing failed: {error_msg}", None, [], "", None, None, "")
except Exception:
return (f"β Enhanced parsing failed: <Unicode encoding error>", None, [], "", None, None, "")
# Find output directory
outputs_root = Path("outputs")
out_dir = outputs_root / original_filename / "enhanced_parse"
if not out_dir.exists():
candidates = sorted(outputs_root.glob("*/"), key=lambda p: p.stat().st_mtime, reverse=True)
if candidates:
out_dir = candidates[0] / "enhanced_parse"
else:
out_dir = outputs_root
# If still no enhanced_parse directory, try to find any directory with enhanced files
if not out_dir.exists():
for candidate_dir in outputs_root.rglob("*"):
if candidate_dir.is_dir():
enhanced_pdfs = list(candidate_dir.glob("*enhanced*.pdf"))
if enhanced_pdfs:
out_dir = candidate_dir
break
# Load first page content initially
md_preview = None
try:
pages_dir = out_dir / "pages"
first_page_path = pages_dir / "page_001.md"
if first_page_path.exists():
with first_page_path.open("r", encoding="utf-8", errors="ignore") as f:
md_content = f.read()
md_lines = md_content.split('\n')
md_preview = create_page_html_content(md_lines, out_dir)
else:
md_file = next(out_dir.glob("*.md"), None)
if md_file and md_file.exists():
with md_file.open("r", encoding="utf-8", errors="ignore") as f:
md_content = f.read()
md_lines = md_content.split('\n')
md_preview = create_page_html_content(md_lines, out_dir)
except Exception as e:
print(f"β Error loading initial content: {e}")
md_preview = None
# Gather output files and create ZIP
_, file_paths, zip_path = gather_outputs(
out_dir,
zip_filename=f"{original_filename}_enhanced",
is_structured_parsing=False
)
# Look for enhanced PDF file
enhanced_pdf_path = None
if use_image_restoration:
enhanced_pdf_candidates = list(out_dir.glob("*enhanced*.pdf"))
if enhanced_pdf_candidates:
enhanced_pdf_path = str(enhanced_pdf_candidates[0])
else:
parent_enhanced = list(out_dir.parent.glob("*enhanced*.pdf"))
if parent_enhanced:
enhanced_pdf_path = str(parent_enhanced[0])
return (
f"β
Enhanced parsing completed successfully!\nπ Output directory: {out_dir}",
md_preview,
file_paths,
zip_path,
pdf_file, # Original PDF path
enhanced_pdf_path, # Enhanced PDF path
str(out_dir) # Output directory for page-specific content
)
def create_tips_markdown() -> str:
"""Create the tips section markdown for the UI."""
return """
<div class="card">
<b>Tips</b>
<ul>
<li>On Spaces, set a secret <code>VLM_API_KEY</code> to enable VLM features.</li>
<li>Use <strong>Enhanced Parser</strong> for documents that need image restoration before parsing (scanned docs, low-quality PDFs).</li>
<li>Use <strong>DocRes Image Restoration</strong> for standalone image enhancement without parsing.</li>
<li>DocRes tasks: <code>appearance</code> (default), <code>dewarping</code>, <code>deshadowing</code>, <code>deblurring</code>, <code>binarization</code>, <code>end2end</code>.</li>
<li>Outputs are saved under <code>outputs/<pdf_stem>/</code>.</li>
<li><strong>Note:</strong> Google Gemini VLM may not be available due to dependency conflicts. Use OpenAI, Anthropic, or other VLM providers.</li>
</ul>
</div>
"""
# Create the main Gradio interface
with gr.Blocks(title="Doctra - Document Parser", theme=THEME, css=CUSTOM_CSS) as demo:
# Header section
gr.Markdown(
"""
<div class="header">
<h2 style="margin:0">Doctra β Document Parser</h2>
<div class="subtitle">Parse PDFs, extract tables/charts, preview markdown, and download outputs.</div>
</div>
"""
)
# Full Parse Tab
with gr.Tab("Full Parse"):
with gr.Row():
pdf = gr.File(file_types=[".pdf"], label="PDF")
use_vlm = gr.Checkbox(label="Use VLM (optional)", value=False)
vlm_provider = gr.Dropdown(["openai", "anthropic", "openrouter", "ollama"], value="openai", label="VLM Provider")
vlm_api_key = gr.Textbox(type="password", label="VLM API Key", placeholder="Optional if VLM disabled")
with gr.Accordion("Advanced", open=False):
with gr.Row():
layout_model = gr.Textbox(value="PP-DocLayout_plus-L", label="Layout model")
dpi = gr.Slider(100, 400, value=200, step=10, label="DPI")
min_score = gr.Slider(0, 1, value=0.0, step=0.05, label="Min layout score")
with gr.Row():
ocr_lang = gr.Textbox(value="eng", label="OCR Language")
ocr_psm = gr.Slider(0, 13, value=4, step=1, label="Tesseract PSM")
ocr_oem = gr.Slider(0, 3, value=3, step=1, label="Tesseract OEM")
with gr.Row():
ocr_config = gr.Textbox(value="", label="Extra OCR config")
box_sep = gr.Textbox(value="\n", label="Box separator")
run_btn = gr.Button("βΆ Run Full Parse", variant="primary")
status = gr.Textbox(label="Status", elem_classes=["status-ok"])
# Full Parse components
with gr.Row():
with gr.Column():
md_preview = gr.HTML(label="Extracted Content", visible=True, elem_classes=["page-content"])
with gr.Column():
page_image = gr.Image(label="Page image", interactive=False)
files_out = gr.Files(label="Download individual output files")
zip_out = gr.File(label="Download all outputs (ZIP)")
run_btn.click(
fn=run_full_parse,
inputs=[pdf, use_vlm, vlm_provider, vlm_api_key, layout_model, dpi, min_score, ocr_lang, ocr_psm, ocr_oem, ocr_config, box_sep],
outputs=[status, md_preview, files_out, zip_out],
)
# Tables & Charts Tab
with gr.Tab("Extract Tables/Charts"):
with gr.Row():
pdf_e = gr.File(file_types=[".pdf"], label="PDF")
target = gr.Dropdown(["tables", "charts", "both"], value="both", label="Target")
use_vlm_e = gr.Checkbox(label="Use VLM (optional)", value=False)
vlm_provider_e = gr.Dropdown(["openai", "anthropic", "openrouter", "ollama"], value="openai", label="VLM Provider")
vlm_api_key_e = gr.Textbox(type="password", label="VLM API Key", placeholder="Optional if VLM disabled")
with gr.Accordion("Advanced", open=False):
with gr.Row():
layout_model_e = gr.Textbox(value="PP-DocLayout_plus-L", label="Layout model")
dpi_e = gr.Slider(100, 400, value=200, step=10, label="DPI")
min_score_e = gr.Slider(0, 1, value=0.0, step=0.05, label="Min layout score")
run_btn_e = gr.Button("βΆ Run Extraction", variant="primary")
status_e = gr.Textbox(label="Status")
with gr.Row():
with gr.Column():
tables_preview_e = gr.HTML(label="Extracted Data", elem_classes=["page-content"])
with gr.Column():
image_e = gr.Image(label="Selected Image", interactive=False)
files_out_e = gr.Files(label="Download individual output files")
zip_out_e = gr.File(label="Download all outputs (ZIP)")
run_btn_e.click(
fn=lambda f, t, a, b, c, d, e, g: run_extract(
f.name if f else "",
t,
a,
b,
c,
d,
e,
g,
),
inputs=[pdf_e, target, use_vlm_e, vlm_provider_e, vlm_api_key_e, layout_model_e, dpi_e, min_score_e],
outputs=[status_e, tables_preview_e, files_out_e, zip_out_e],
)
# DocRes Image Restoration Tab
with gr.Tab("DocRes Image Restoration"):
with gr.Row():
pdf_docres = gr.File(file_types=[".pdf"], label="PDF")
docres_task_standalone = gr.Dropdown(
["appearance", "dewarping", "deshadowing", "deblurring", "binarization", "end2end"],
value="appearance",
label="Restoration Task"
)
docres_device_standalone = gr.Dropdown(
["auto", "cuda", "cpu"],
value="auto",
label="Device"
)
with gr.Row():
docres_dpi = gr.Slider(100, 400, value=200, step=10, label="DPI")
docres_save_enhanced = gr.Checkbox(label="Save Enhanced PDF", value=True)
docres_save_images = gr.Checkbox(label="Save Enhanced Images", value=True)
run_docres_btn = gr.Button("βΆ Run DocRes Restoration", variant="primary")
docres_status = gr.Textbox(label="Status", elem_classes=["status-ok"])
with gr.Row():
with gr.Column():
gr.Markdown("### π Original PDF")
docres_original_pdf = gr.File(label="Original PDF File", interactive=False, visible=False)
docres_original_page_image = gr.Image(label="Original PDF Page", interactive=False, height=800)
with gr.Column():
gr.Markdown("### β¨ Enhanced PDF")
docres_enhanced_pdf = gr.File(label="Enhanced PDF File", interactive=False, visible=False)
docres_enhanced_page_image = gr.Image(label="Enhanced PDF Page", interactive=False, height=800)
docres_files_out = gr.Files(label="Download enhanced files")
run_docres_btn.click(
fn=run_docres_restoration,
inputs=[pdf_docres, docres_task_standalone, docres_device_standalone, docres_dpi, docres_save_enhanced, docres_save_images],
outputs=[docres_status, docres_original_pdf, docres_enhanced_pdf, docres_files_out]
)
# Enhanced Parser Tab
with gr.Tab("Enhanced Parser"):
with gr.Row():
pdf_enhanced = gr.File(file_types=[".pdf"], label="PDF")
use_image_restoration = gr.Checkbox(label="Use Image Restoration", value=True)
restoration_task = gr.Dropdown(
["appearance", "dewarping", "deshadowing", "deblurring", "binarization", "end2end"],
value="appearance",
label="Restoration Task"
)
restoration_device = gr.Dropdown(
["auto", "cuda", "cpu"],
value="auto",
label="Restoration Device"
)
with gr.Row():
use_vlm_enhanced = gr.Checkbox(label="Use VLM (optional)", value=False)
vlm_provider_enhanced = gr.Dropdown(["openai", "anthropic", "openrouter", "ollama"], value="openai", label="VLM Provider")
vlm_api_key_enhanced = gr.Textbox(type="password", label="VLM API Key", placeholder="Optional if VLM disabled")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
restoration_dpi = gr.Slider(100, 400, value=200, step=10, label="Restoration DPI")
layout_model_enhanced = gr.Textbox(value="PP-DocLayout_plus-L", label="Layout model")
dpi_enhanced = gr.Slider(100, 400, value=200, step=10, label="Processing DPI")
min_score_enhanced = gr.Slider(0, 1, value=0.0, step=0.05, label="Min layout score")
with gr.Row():
ocr_lang_enhanced = gr.Textbox(value="eng", label="OCR Language")
ocr_psm_enhanced = gr.Slider(0, 13, value=4, step=1, label="Tesseract PSM")
ocr_oem_enhanced = gr.Slider(0, 3, value=3, step=1, label="Tesseract OEM")
with gr.Row():
ocr_config_enhanced = gr.Textbox(value="", label="Extra OCR config")
box_sep_enhanced = gr.Textbox(value="\n", label="Box separator")
run_enhanced_btn = gr.Button("βΆ Run Enhanced Parse", variant="primary")
enhanced_status = gr.Textbox(label="Status", elem_classes=["status-ok"])
with gr.Row():
with gr.Column():
gr.Markdown("### π Original PDF")
enhanced_original_pdf = gr.File(label="Original PDF File", interactive=False, visible=False)
enhanced_original_page_image = gr.Image(label="Original PDF Page", interactive=False, height=600)
with gr.Column():
gr.Markdown("### β¨ Enhanced PDF")
enhanced_enhanced_pdf = gr.File(label="Enhanced PDF File", interactive=False, visible=False)
enhanced_enhanced_page_image = gr.Image(label="Enhanced PDF Page", interactive=False, height=600)
with gr.Row():
enhanced_md_preview = gr.HTML(label="Extracted Content", visible=True, elem_classes=["page-content"])
enhanced_files_out = gr.Files(label="Download individual output files")
enhanced_zip_out = gr.File(label="Download all outputs (ZIP)")
run_enhanced_btn.click(
fn=run_enhanced_parse,
inputs=[
pdf_enhanced, use_image_restoration, restoration_task, restoration_device, restoration_dpi,
use_vlm_enhanced, vlm_provider_enhanced, vlm_api_key_enhanced, layout_model_enhanced,
dpi_enhanced, min_score_enhanced, ocr_lang_enhanced, ocr_psm_enhanced, ocr_oem_enhanced,
ocr_config_enhanced, box_sep_enhanced
],
outputs=[
enhanced_status, enhanced_md_preview, enhanced_files_out, enhanced_zip_out,
enhanced_original_pdf, enhanced_enhanced_pdf
]
)
# Tips section
gr.Markdown(create_tips_markdown())
if __name__ == "__main__":
# Launch the interface
demo.launch(
server_name="0.0.0.0",
server_port=int(os.getenv("PORT", "7860")),
share=False
)
|