File size: 7,552 Bytes
4c18539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model
import joblib
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.applications.inception_v3 import preprocess_input
from tensorflow.keras.datasets import imdb

import cv2
from BackPropogation import BackPropogation
from Perceptron import  Perceptron
from sklearn.linear_model import Perceptron
import tensorflow as tf
import joblib
import pickle
from numpy import argmax


# Load saved models
image_model = load_model('tumor_detection_model.h5')
dnn_model = load_model('sms_spam_detection_dnnmodel.h5')
rnn_model = load_model('spam_detection_rnn_model.h5')

# Loading the model using pickle
with open(r'D:/one/OneDrive/Desktop/Streamlit/Model_backprop.pkl', 'rb') as file:
    backprop_model = pickle.load(file)

with open(r'D:/one/OneDrive/Desktop/Streamlit/Percep_model.pkl', 'rb') as file:
    perceptron_model = pickle.load(file)

with open(r'D:/one/OneDrive/Desktop/Streamlit/tokeniser.pkl', 'rb') as file:
    loaded_tokeniser = pickle.load(file)

lstm_model_path='Lstm_model.h5'

# Streamlit app     
st.title("Classification")

# Sidebar
task = st.sidebar.selectbox("Select Task", ["Tumor Detection ", "Sentiment Classification"])
tokeniser = tf.keras.preprocessing.text.Tokenizer()
max_length=10

def predictdnn_spam(text):
        sequence = loaded_tokeniser.texts_to_sequences([text])
        padded_sequence = pad_sequences(sequence, maxlen=10)
        prediction = dnn_model.predict(padded_sequence)[0][0]
        if prediction >= 0.5:
            return "not spam"
        else:
            return "spam"
def preprocess_imdbtext(text, maxlen=200, num_words=10000):
    # Tokenizing the text
    tokenizer = Tokenizer(num_words=num_words)
    tokenizer.fit_on_texts(text)
    
    # Converting text to sequences
    sequences = tokenizer.texts_to_sequences(text)
    
    # Padding sequences to a fixed length
    padded_sequences = pad_sequences(sequences, maxlen=maxlen)
    
    return padded_sequences, tokenizer

def predict_sentiment_backprop(text, model):
    preprocessed_text = preprocess_imdbtext(text, 200)  
    prediction = backprop_model.predict(preprocessed_text)
    return prediction

def preprocess_imdb_lstm(user_input, tokenizer, max_review_length=500):
        # Tokenize and pad the user input
        user_input_sequence = tokenizer.texts_to_sequences([user_input])
        user_input_padded = pad_sequences(user_input_sequence, maxlen=max_review_length)
        return user_input_padded

def predict_sentiment_lstm(model, user_input, tokenizer):
        preprocessed_input = preprocess_imdb_lstm(user_input, tokenizer)
        prediction = model.predict(preprocessed_input)
        return prediction

def predict_sentiment_precep(user_input, num_words=1000, max_len=200):
        word_index = imdb.get_word_index()
        input_sequence = [word_index[word] if word in word_index and word_index[word] < num_words else 0 for word in user_input.split()]
        padded_sequence = pad_sequences([input_sequence], maxlen=max_len)
        return padded_sequence 
    
    

def preprocess_message_dnn(message, tokeniser, max_length):
    # Tokenize and pad the input message
    encoded_message = tokeniser.texts_to_sequences([message])
    padded_message = tf.keras.preprocessing.sequence.pad_sequences(encoded_message, maxlen=max_length, padding='post')
    return padded_message

def predict_rnnspam(message, tokeniser, max_length):
    # Preprocess the message
    processed_message = preprocess_message_dnn(message, tokeniser, max_length)
    
    # Predict spam or ham
    prediction = rnn_model.predict(processed_message)
    if prediction >= 0.5:
        return "Spam"
    else:
        return "Ham"


# make a prediction for CNN
def preprocess_image(image):
    image = image.resize((299, 299))
    image_array = np.array(image)
    preprocessed_image = preprocess_input(image_array)

    return preprocessed_image

def make_prediction_cnn(image, image_model):
    img = image.resize((128, 128))
    img_array = np.array(img)
    img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2]))

    preprocessed_image = preprocess_input(img_array)
    prediction = image_model.predict(preprocessed_image)

    if prediction > 0.5:
        st.write("Tumor Detected")
    else:
        st.write("No Tumor")
if task == "Sentiment Classification":
    st.subheader("Choose Model")
    model_choice = st.radio("Select Model", ["DNN", "RNN", "Perceptron", "Backpropagation","LSTM"])

    st.subheader("Text Input")
    

    if model_choice=='DNN':
        text_input = st.text_area("Enter Text")
        if st.button("Predict"):
            if text_input:
                        prediction_result = predictdnn_spam(text_input)
                        st.write(f"The review's class is: {prediction_result}")
            else:
                        st.write("Enter a movie review")

    elif model_choice == "RNN":
            text_input = st.text_area("Enter Text")
            if text_input:
                prediction_result = predict_rnnspam(text_input,loaded_tokeniser,max_length=10)
            if st.button("Predict"):   
                st.write(f"The message is classified as: {prediction_result}")
            else:
                st.write("Please enter some text for prediction")
    elif model_choice == "Perceptron":
                text_input = st.text_area("Enter Text" )
                if st.button('Predict'):
                    processed_input = predict_sentiment_precep(text_input)
                    prediction = perceptron_model.predict(processed_input)[0]
                    sentiment = "Positive" if prediction == 1 else "Negative"
                    st.write(f"Predicted Sentiment: {sentiment}")
    elif model_choice == "LSTM":
            
            lstm_model = tf.keras.models.load_model(lstm_model_path)
            text_input = st.text_area("Enter text for sentiment analysis:", "")
            if st.button("Predict"):
                tokenizer = Tokenizer(num_words=5000)
                prediction = predict_sentiment_lstm(lstm_model, text_input, tokenizer)

                if prediction[0][0]<0.5 :
                    result="Negative"
                    st.write(f"The message is classified as: {result}")
                else:
                    result="Positive"
                    st.write(f"The message is classified as: {result}")

    elif model_choice == "Backpropagation":
                text_input = st.text_area("Enter Text" )
                if st.button('Predict'):
                    processed_input = predict_sentiment_precep(text_input)
                    prediction = backprop_model.predict(processed_input)[0]
                    sentiment = "Positive" if prediction == 1 else "Negative"
                    st.write(f"Predicted Sentiment: {sentiment}")

else:
    st.subheader("Choose Model")
    model_choice = st.radio("Select Model", ["CNN"])

    st.subheader("Image Input")
    image_input = st.file_uploader("Choose an image...", type="jpg")

    if image_input is not None:
        image = Image.open(image_input)
        st.image(image, caption="Uploaded Image.", use_column_width=True)

        # Preprocess the image
        preprocessed_image = preprocess_image(image)

        if st.button("Predict"):
            if model_choice == "CNN":
                make_prediction_cnn(image, image_model)