Spaces:
Runtime error
Runtime error
File size: 6,930 Bytes
a22dacf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import torch
from controlnet_aux import HEDdetector
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler,
)
from PIL import Image
from diffusion_webui.utils.model_list import (
controlnet_scribble_model_list,
stable_model_list,
)
from diffusion_webui.utils.scheduler_list import (
SCHEDULER_LIST,
get_scheduler_list,
)
class StableDiffusionControlNetScribbleGenerator:
def __init__(self):
self.pipe = None
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
if self.pipe is None:
controlnet = ControlNetModel.from_pretrained(
controlnet_model_path, torch_dtype=torch.float16
)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
pretrained_model_name_or_path=stable_model_path,
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
)
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
return self.pipe
def controlnet_scribble(self, image_path: str):
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
image = Image.open(image_path)
image = hed(image, scribble=True)
return image
def generate_image(
self,
image_path: str,
stable_model_path: str,
controlnet_hed_model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
guidance_scale: int,
num_inference_step: int,
scheduler: str,
seed_generator: int,
):
image = self.controlnet_scribble(image_path=image_path)
pipe = self.load_model(
stable_model_path=stable_model_path,
controlnet_model_path=controlnet_hed_model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
output = pipe(
prompt=prompt,
image=image,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return output
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
controlnet_scribble_image_file = gr.Image(
type="filepath", label="Image"
)
controlnet_scribble_prompt = gr.Textbox(
lines=1,
show_label=False,
placeholder="Prompt",
)
controlnet_scribble_negative_prompt = gr.Textbox(
lines=1,
show_label=False,
placeholder="Negative Prompt",
)
with gr.Row():
with gr.Column():
controlnet_scribble_stable_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Stable Model Id",
)
controlnet_scribble_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
controlnet_scribble_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
controlnet_scribble_num_images_per_prompt = (
gr.Slider(
minimum=1,
maximum=10,
step=1,
value=1,
label="Number Of Images",
)
)
with gr.Row():
with gr.Column():
controlnet_scribble_model_id = gr.Dropdown(
choices=controlnet_scribble_model_list,
value=controlnet_scribble_model_list[0],
label="ControlNet Model Id",
)
controlnet_scribble_scheduler = gr.Dropdown(
choices=SCHEDULER_LIST,
value=SCHEDULER_LIST[0],
label="Scheduler",
)
controlnet_scribble_seed_generator = gr.Number(
minimum=0,
maximum=1000000,
step=1,
value=0,
label="Seed Generator",
)
controlnet_scribble_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2))
controlnet_scribble_predict.click(
fn=StableDiffusionControlNetScribbleGenerator().generate_image,
inputs=[
controlnet_scribble_image_file,
controlnet_scribble_stable_model_id,
controlnet_scribble_model_id,
controlnet_scribble_prompt,
controlnet_scribble_negative_prompt,
controlnet_scribble_num_images_per_prompt,
controlnet_scribble_guidance_scale,
controlnet_scribble_num_inference_step,
controlnet_scribble_scheduler,
controlnet_scribble_seed_generator,
],
outputs=output_image,
)
|