Spaces:
Runtime error
Runtime error
File size: 5,722 Bytes
cab0202 ad3df52 ea3852a cab0202 a2754d8 cab0202 ea3852a 485bc76 ea3852a cab0202 ad3df52 cab0202 ad3df52 cab0202 16f3213 cab0202 551c0db cab0202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from PIL import Image
from diffusion_webui.utils.model_list import stable_model_list
from diffusion_webui.utils.scheduler_list import (
SCHEDULER_MAPPING,
get_scheduler,
)
class StableDiffusionImage2ImageGenerator:
def __init__(self):
self.pipe = None
def load_model(self, stable_model_path, scheduler):
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
stable_model_path, safety_checker=None, torch_dtype=torch.float16
)
self.pipe.model_name = stable_model_path
self.pipe.scheduler_name = scheduler
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
return self.pipe
def generate_image(
self,
image_path: str,
stable_model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
scheduler: str,
guidance_scale: int,
num_inference_step: int,
seed_generator=0,
):
pipe = self.load_model(
stable_model_path=stable_model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
image = Image.open(image_path)
images = pipe(
prompt,
image=image,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return images
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image2image_image_file = gr.Image(
type="filepath", label="Image"
)
image2image_prompt = gr.Textbox(
lines=1,
placeholder="Prompt",
show_label=False,
)
image2image_negative_prompt = gr.Textbox(
lines=1,
placeholder="Negative Prompt",
show_label=False,
)
with gr.Row():
with gr.Column():
image2image_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Stable Model Id",
)
image2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
image2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
with gr.Row():
with gr.Column():
image2image_scheduler = gr.Dropdown(
choices=list(SCHEDULER_MAPPING.keys()),
value=list(SCHEDULER_MAPPING.keys())[0],
label="Scheduler",
)
image2image_num_images_per_prompt = gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Number Of Images",
)
image2image_seed_generator = gr.Slider(
minimum=0,
maximum=1000000,
step=1,
value=0,
label="Seed(0 for random)",
)
image2image_predict_button = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2))
image2image_predict_button.click(
fn=StableDiffusionImage2ImageGenerator().generate_image,
inputs=[
image2image_image_file,
image2image_model_path,
image2image_prompt,
image2image_negative_prompt,
image2image_num_images_per_prompt,
image2image_scheduler,
image2image_guidance_scale,
image2image_num_inference_step,
image2image_seed_generator,
],
outputs=[output_image],
)
|