Spaces:
Runtime error
Runtime error
File size: 10,343 Bytes
cab0202 0c34bcf cab0202 b6a0569 cab0202 b6a0569 cab0202 b6a0569 cab0202 b6a0569 fe8561f b6a0569 cab0202 b6a0569 cab0202 08d3aea 2353791 860a671 08d3aea 2353791 cab0202 8d70627 cab0202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import torch
import cv2
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
from PIL import Image
from diffusion_webui.diffusion_models.base_controlnet_pipeline import (
ControlnetPipeline,
)
from diffusion_webui.utils.model_list import (
controlnet_model_list,
stable_model_list,
)
from diffusion_webui.utils.preprocces_utils import PREPROCCES_DICT
from diffusion_webui.utils.scheduler_list import (
SCHEDULER_MAPPING,
get_scheduler,
)
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"dreamlike-art/dreamlike-diffusion-1.0",
"kadirnar/maturemalemix_v0",
"kadirnar/DreamShaper_v6"
]
stable_inpiant_model_list = [
"stabilityai/stable-diffusion-2-inpainting",
"runwayml/stable-diffusion-inpainting",
"saik0s/realistic_vision_inpainting",
]
controlnet_model_list = [
"lllyasviel/control_v11p_sd15_canny",
"lllyasviel/control_v11f1p_sd15_depth",
"lllyasviel/control_v11p_sd15_openpose",
"lllyasviel/control_v11p_sd15_scribble",
"lllyasviel/control_v11p_sd15_mlsd",
"lllyasviel/control_v11e_sd15_shuffle",
"lllyasviel/control_v11e_sd15_ip2p",
"lllyasviel/control_v11p_sd15_lineart",
"lllyasviel/control_v11p_sd15s2_lineart_anime",
"lllyasviel/control_v11p_sd15_softedge",
]
class StableDiffusionControlNetGenerator(ControlnetPipeline):
def __init__(self):
self.pipe = None
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
controlnet = ControlNetModel.from_pretrained(
controlnet_model_path, torch_dtype=torch.float16
)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
pretrained_model_name_or_path=stable_model_path,
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
)
self.pipe.model_name = stable_model_path
self.pipe.scheduler_name = scheduler
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
self.pipe.scheduler_name = scheduler
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
return self.pipe
def controlnet_preprocces(
self,
read_image: str,
preprocces_type: str,
):
processed_image = PREPROCCES_DICT[preprocces_type](read_image)
return processed_image
def generate_image(
self,
image_path: str,
stable_model_path: str,
controlnet_model_path: str,
height: int,
width: int,
guess_mode: bool,
controlnet_conditioning_scale: int,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
guidance_scale: int,
num_inference_step: int,
scheduler: str,
seed_generator: int,
preprocces_type: str,
):
pipe = self.load_model(
stable_model_path=stable_model_path,
controlnet_model_path=controlnet_model_path,
scheduler=scheduler,
)
if preprocces_type== "ScribbleXDOG":
read_image = cv2.imread(image_path)
controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type)[0]
controlnet_image = Image.fromarray(controlnet_image)
elif preprocces_type== "None":
controlnet_image = self.controlnet_preprocces(read_image=image_path, preprocces_type=preprocces_type)
else:
read_image = Image.open(image_path)
controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
output = pipe(
prompt=prompt,
height=height,
width=width,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guess_mode=guess_mode,
image=controlnet_image,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return output
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
controlnet_image_path = gr.Image(
type="filepath", label="Image"
).style(height=260)
controlnet_prompt = gr.Textbox(
lines=1, placeholder="Prompt", show_label=False
)
controlnet_negative_prompt = gr.Textbox(
lines=1, placeholder="Negative Prompt", show_label=False
)
with gr.Row():
with gr.Column():
controlnet_stable_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Stable Model Path",
)
controlnet_preprocces_type = gr.Dropdown(
choices=list(PREPROCCES_DICT.keys()),
value=list(PREPROCCES_DICT.keys())[0],
label="Preprocess Type",
)
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="ControlNet Conditioning Scale",
)
controlnet_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
controlnet_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Height",
)
controlnet_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Width",
)
with gr.Row():
with gr.Column():
controlnet_model_path = gr.Dropdown(
choices=controlnet_model_list,
value=controlnet_model_list[0],
label="ControlNet Model Path",
)
controlnet_scheduler = gr.Dropdown(
choices=list(SCHEDULER_MAPPING.keys()),
value=list(SCHEDULER_MAPPING.keys())[0],
label="Scheduler",
)
controlnet_num_inference_step = gr.Slider(
minimum=1,
maximum=150,
step=1,
value=30,
label="Num Inference Step",
)
controlnet_num_images_per_prompt = gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Number Of Images",
)
controlnet_seed_generator = gr.Slider(
minimum=0,
maximum=1000000,
step=1,
value=0,
label="Seed(0 for random)",
)
controlnet_guess_mode = gr.Checkbox(
label="Guess Mode"
)
# Button to generate the image
predict_button = gr.Button(value="Generate Image")
with gr.Column():
# Gallery to display the generated images
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2))
predict_button.click(
fn=StableDiffusionControlNetGenerator().generate_image,
inputs=[
controlnet_image_path,
controlnet_stable_model_path,
controlnet_model_path,
controlnet_height,
controlnet_width,
controlnet_guess_mode,
controlnet_conditioning_scale,
controlnet_prompt,
controlnet_negative_prompt,
controlnet_num_images_per_prompt,
controlnet_guidance_scale,
controlnet_num_inference_step,
controlnet_scheduler,
controlnet_seed_generator,
controlnet_preprocces_type,
],
outputs=[output_image],
)
|