File size: 5,647 Bytes
35f6708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import json
import logging
import wave
from dataclasses import dataclass
from pathlib import Path
from typing import Iterable, List, Optional, Union

import numpy as np
import onnxruntime
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run

from .config import PhonemeType, PiperConfig
from .const import BOS, EOS, PAD
from .util import audio_float_to_int16

_LOGGER = logging.getLogger(__name__)


@dataclass
class PiperVoice:
    session: onnxruntime.InferenceSession
    config: PiperConfig

    @staticmethod
    def load(
        model_path: Union[str, Path],
        config_path: Optional[Union[str, Path]] = None,
        use_cuda: bool = False,
    ) -> "PiperVoice":
        """Load an ONNX model and config."""
        if config_path is None:
            config_path = f"{model_path}.json"

        with open(config_path, "r", encoding="utf-8") as config_file:
            config_dict = json.load(config_file)

        return PiperVoice(
            config=PiperConfig.from_dict(config_dict),
            session=onnxruntime.InferenceSession(
                str(model_path),
                sess_options=onnxruntime.SessionOptions(),
                providers=["CPUExecutionProvider"]
                if not use_cuda
                else ["CUDAExecutionProvider"],
            ),
        )

    def phonemize(self, text: str) -> List[List[str]]:
        """Text to phonemes grouped by sentence."""
        if self.config.phoneme_type == PhonemeType.ESPEAK:
            if self.config.espeak_voice == "ar":
                # Arabic diacritization
                # https://github.com/mush42/libtashkeel/
                text = tashkeel_run(text)

            return phonemize_espeak(text, self.config.espeak_voice)

        if self.config.phoneme_type == PhonemeType.TEXT:
            return phonemize_codepoints(text)

        raise ValueError(f"Unexpected phoneme type: {self.config.phoneme_type}")

    def phonemes_to_ids(self, phonemes: List[str]) -> List[int]:
        """Phonemes to ids."""
        id_map = self.config.phoneme_id_map
        ids: List[int] = list(id_map[BOS])

        for phoneme in phonemes:
            if phoneme not in id_map:
                _LOGGER.warning("Missing phoneme from id map: %s", phoneme)
                continue

            ids.extend(id_map[phoneme])
            ids.extend(id_map[PAD])

        ids.extend(id_map[EOS])

        return ids

    def synthesize(
        self,
        text: str,
        wav_file: wave.Wave_write,
        speaker_id: Optional[int] = None,
        length_scale: Optional[float] = None,
        noise_scale: Optional[float] = None,
        noise_w: Optional[float] = None,
        sentence_silence: float = 0.0,
    ):
        """Synthesize WAV audio from text."""
        wav_file.setframerate(self.config.sample_rate)
        wav_file.setsampwidth(2)  # 16-bit
        wav_file.setnchannels(1)  # mono

        for audio_bytes in self.synthesize_stream_raw(
            text,
            speaker_id=speaker_id,
            length_scale=length_scale,
            noise_scale=noise_scale,
            noise_w=noise_w,
            sentence_silence=sentence_silence,
        ):
            wav_file.writeframes(audio_bytes)

    def synthesize_stream_raw(
        self,
        text: str,
        speaker_id: Optional[int] = None,
        length_scale: Optional[float] = None,
        noise_scale: Optional[float] = None,
        noise_w: Optional[float] = None,
        sentence_silence: float = 0.0,
    ) -> Iterable[bytes]:
        """Synthesize raw audio per sentence from text."""
        sentence_phonemes = self.phonemize(text)

        # 16-bit mono
        num_silence_samples = int(sentence_silence * self.config.sample_rate)
        silence_bytes = bytes(num_silence_samples * 2)

        for phonemes in sentence_phonemes:
            phoneme_ids = self.phonemes_to_ids(phonemes)
            yield self.synthesize_ids_to_raw(
                phoneme_ids,
                speaker_id=speaker_id,
                length_scale=length_scale,
                noise_scale=noise_scale,
                noise_w=noise_w,
            ) + silence_bytes

    def synthesize_ids_to_raw(
        self,
        phoneme_ids: List[int],
        speaker_id: Optional[int] = None,
        length_scale: Optional[float] = None,
        noise_scale: Optional[float] = None,
        noise_w: Optional[float] = None,
    ) -> bytes:
        """Synthesize raw audio from phoneme ids."""
        if length_scale is None:
            length_scale = self.config.length_scale

        if noise_scale is None:
            noise_scale = self.config.noise_scale

        if noise_w is None:
            noise_w = self.config.noise_w

        phoneme_ids_array = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
        phoneme_ids_lengths = np.array([phoneme_ids_array.shape[1]], dtype=np.int64)
        scales = np.array(
            [noise_scale, length_scale, noise_w],
            dtype=np.float32,
        )

        if (self.config.num_speakers > 1) and (speaker_id is None):
            # Default speaker
            speaker_id = 0

        sid = None

        if speaker_id is not None:
            sid = np.array([speaker_id], dtype=np.int64)

        # Synthesize through Onnx
        audio = self.session.run(
            None,
            {
                "input": phoneme_ids_array,
                "input_lengths": phoneme_ids_lengths,
                "scales": scales,
                "sid": sid,
            },
        )[0].squeeze((0, 1))
        audio = audio_float_to_int16(audio.squeeze())

        return audio.tobytes()