File size: 8,190 Bytes
8b96836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np,parselmouth,torch,pdb
from time import time as ttime
import torch.nn.functional as F
from config import x_pad,x_query,x_center,x_max
import scipy.signal as signal
import pyworld,os,traceback,faiss
class VC(object):
    def __init__(self,tgt_sr,device,is_half):
        self.sr=16000#hubert输入采样率
        self.window=160#每帧点数
        self.t_pad=self.sr*x_pad#每条前后pad时间
        self.t_pad_tgt=tgt_sr*x_pad
        self.t_pad2=self.t_pad*2
        self.t_query=self.sr*x_query#查询切点前后查询时间
        self.t_center=self.sr*x_center#查询切点位置
        self.t_max=self.sr*x_max#免查询时长阈值
        self.device=device
        self.is_half=is_half

    def get_f0(self,x, p_len,f0_up_key,f0_method,inp_f0=None):
        time_step = self.window / self.sr * 1000
        f0_min = 50
        f0_max = 1100
        f0_mel_min = 1127 * np.log(1 + f0_min / 700)
        f0_mel_max = 1127 * np.log(1 + f0_max / 700)
        if(f0_method=="pm"):
            f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
                time_step=time_step / 1000, voicing_threshold=0.6,
                pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
            pad_size=(p_len - len(f0) + 1) // 2
            if(pad_size>0 or p_len - len(f0) - pad_size>0):
                f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
        elif(f0_method=="harvest"):
            f0, t = pyworld.harvest(
                x.astype(np.double),
                fs=self.sr,
                f0_ceil=f0_max,
                f0_floor=f0_min,
                frame_period=10,
            )
            f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
            f0 = signal.medfilt(f0, 3)
        f0 *= pow(2, f0_up_key / 12)
        # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
        tf0=self.sr//self.window#每秒f0点数
        if (inp_f0 is not None):
            delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
            replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
            shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
            f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
        # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
        f0bak = f0.copy()
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        f0_coarse = np.rint(f0_mel).astype(int)
        return f0_coarse, f0bak#1-0

    def vc(self,model,net_g,sid,audio0,pitch,pitchf,times,index,big_npy,index_rate):#,file_index,file_big_npy
        feats = torch.from_numpy(audio0)
        if(self.is_half):feats=feats.half()
        else:feats=feats.float()
        if feats.dim() == 2:  # double channels
            feats = feats.mean(-1)
        assert feats.dim() == 1, feats.dim()
        feats = feats.view(1, -1)
        padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)

        inputs = {
            "source": feats.to(self.device),
            "padding_mask": padding_mask,
            "output_layer": 9,  # layer 9
        }
        t0 = ttime()
        with torch.no_grad():
            logits = model.extract_features(**inputs)
            feats  = model.final_proj(logits[0])

        if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0):
            npy = feats[0].cpu().numpy()
            if(self.is_half):npy=npy.astype("float32")
            _, I = index.search(npy, 1)
            npy=big_npy[I.squeeze()]
            if(self.is_half):npy=npy.astype("float16")
            feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats

        feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
        t1 = ttime()
        p_len = audio0.shape[0]//self.window
        if(feats.shape[1]<p_len):
            p_len=feats.shape[1]
            if(pitch!=None and pitchf!=None):
                pitch=pitch[:,:p_len]
                pitchf=pitchf[:,:p_len]
        p_len=torch.tensor([p_len],device=self.device).long()
        with torch.no_grad():
            if(pitch!=None and pitchf!=None):
                audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
            else:
                audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
        del feats,p_len,padding_mask
        if torch.cuda.is_available(): torch.cuda.empty_cache()
        t2 = ttime()
        times[0] += (t1 - t0)
        times[2] += (t2 - t1)
        return audio1

    def pipeline(self,model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=None):
        if(file_big_npy!=""and file_index!=""and os.path.exists(file_big_npy)==True and os.path.exists(file_index)==True and index_rate!=0):
            try:
                index = faiss.read_index(file_index)
                big_npy = np.load(file_big_npy)
            except:
                traceback.print_exc()
                index=big_npy=None
        else:
            index=big_npy=None
        audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
        opt_ts = []
        if(audio_pad.shape[0]>self.t_max):
            audio_sum = np.zeros_like(audio)
            for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
            for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
        s = 0
        audio_opt=[]
        t=None
        t1=ttime()
        audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
        p_len=audio_pad.shape[0]//self.window
        inp_f0=None
        if(hasattr(f0_file,'name') ==True):
            try:
                with open(f0_file.name,"r")as f:
                    lines=f.read().strip("\n").split("\n")
                inp_f0=[]
                for line in lines:inp_f0.append([float(i)for i in line.split(",")])
                inp_f0=np.array(inp_f0,dtype="float32")
            except:
                traceback.print_exc()
        sid=torch.tensor(sid,device=self.device).unsqueeze(0).long()
        pitch, pitchf=None,None
        if(if_f0==1):
            pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,f0_method,inp_f0)
            pitch = pitch[:p_len]
            pitchf = pitchf[:p_len]
            pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long()
            pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float()
        t2=ttime()
        times[1] += (t2 - t1)
        for t in opt_ts:
            t=t//self.window*self.window
            if (if_f0 == 1):
                audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
            else:
                audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
            s = t
        if (if_f0 == 1):
            audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
        else:
            audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
        audio_opt=np.concatenate(audio_opt)
        del pitch,pitchf,sid
        if torch.cuda.is_available(): torch.cuda.empty_cache()
        return audio_opt