Spaces:
Runtime error
Runtime error
File size: 8,190 Bytes
8b96836 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import numpy as np,parselmouth,torch,pdb
from time import time as ttime
import torch.nn.functional as F
from config import x_pad,x_query,x_center,x_max
import scipy.signal as signal
import pyworld,os,traceback,faiss
class VC(object):
def __init__(self,tgt_sr,device,is_half):
self.sr=16000#hubert输入采样率
self.window=160#每帧点数
self.t_pad=self.sr*x_pad#每条前后pad时间
self.t_pad_tgt=tgt_sr*x_pad
self.t_pad2=self.t_pad*2
self.t_query=self.sr*x_query#查询切点前后查询时间
self.t_center=self.sr*x_center#查询切点位置
self.t_max=self.sr*x_max#免查询时长阈值
self.device=device
self.is_half=is_half
def get_f0(self,x, p_len,f0_up_key,f0_method,inp_f0=None):
time_step = self.window / self.sr * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
if(f0_method=="pm"):
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
pad_size=(p_len - len(f0) + 1) // 2
if(pad_size>0 or p_len - len(f0) - pad_size>0):
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
elif(f0_method=="harvest"):
f0, t = pyworld.harvest(
x.astype(np.double),
fs=self.sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
f0 = signal.medfilt(f0, 3)
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0=self.sr//self.window#每秒f0点数
if (inp_f0 is not None):
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(int)
return f0_coarse, f0bak#1-0
def vc(self,model,net_g,sid,audio0,pitch,pitchf,times,index,big_npy,index_rate):#,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if(self.is_half):feats=feats.half()
else:feats=feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9, # layer 9
}
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0])
if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0):
npy = feats[0].cpu().numpy()
if(self.is_half):npy=npy.astype("float32")
_, I = index.search(npy, 1)
npy=big_npy[I.squeeze()]
if(self.is_half):npy=npy.astype("float16")
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t1 = ttime()
p_len = audio0.shape[0]//self.window
if(feats.shape[1]<p_len):
p_len=feats.shape[1]
if(pitch!=None and pitchf!=None):
pitch=pitch[:,:p_len]
pitchf=pitchf[:,:p_len]
p_len=torch.tensor([p_len],device=self.device).long()
with torch.no_grad():
if(pitch!=None and pitchf!=None):
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
else:
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
del feats,p_len,padding_mask
if torch.cuda.is_available(): torch.cuda.empty_cache()
t2 = ttime()
times[0] += (t1 - t0)
times[2] += (t2 - t1)
return audio1
def pipeline(self,model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=None):
if(file_big_npy!=""and file_index!=""and os.path.exists(file_big_npy)==True and os.path.exists(file_index)==True and index_rate!=0):
try:
index = faiss.read_index(file_index)
big_npy = np.load(file_big_npy)
except:
traceback.print_exc()
index=big_npy=None
else:
index=big_npy=None
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
opt_ts = []
if(audio_pad.shape[0]>self.t_max):
audio_sum = np.zeros_like(audio)
for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
s = 0
audio_opt=[]
t=None
t1=ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
p_len=audio_pad.shape[0]//self.window
inp_f0=None
if(hasattr(f0_file,'name') ==True):
try:
with open(f0_file.name,"r")as f:
lines=f.read().strip("\n").split("\n")
inp_f0=[]
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
inp_f0=np.array(inp_f0,dtype="float32")
except:
traceback.print_exc()
sid=torch.tensor(sid,device=self.device).unsqueeze(0).long()
pitch, pitchf=None,None
if(if_f0==1):
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,f0_method,inp_f0)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float()
t2=ttime()
times[1] += (t2 - t1)
for t in opt_ts:
t=t//self.window*self.window
if (if_f0 == 1):
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
else:
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
s = t
if (if_f0 == 1):
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
else:
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
audio_opt=np.concatenate(audio_opt)
del pitch,pitchf,sid
if torch.cuda.is_available(): torch.cuda.empty_cache()
return audio_opt
|