Spaces:
Runtime error
Runtime error
File size: 5,655 Bytes
ad89eb2 27c7f8a 234eddc 4ef8a32 747f20e ad89eb2 5f8f486 ad89eb2 abac9ba 27c7f8a abac9ba 27c7f8a 5ee100a 27c7f8a dc3b37b 4ef8a32 0ef26c5 cc0da15 0ef26c5 cc0da15 0ef26c5 cc0da15 0ef26c5 cc0da15 0ef26c5 cc0da15 0ef26c5 cc0da15 0ef26c5 b5385c0 0ef26c5 cc0da15 0ef26c5 cc0da15 0ef26c5 b5385c0 ad89eb2 234eddc 4e72cef 234eddc 9ab660c 234eddc f472d71 234eddc 5fb868a 234eddc ad89eb2 9c44c09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
from flask import Flask, request, jsonify
from mistral import Mistral7B
from gpt import ChatGpt
from news import News
from datetime import datetime
from os import listdir
from web import Online_Scraper
import requests
from RT import RealTimeGemini
from time import time as t
import os
app = Flask(__name__)
@app.route('/mistral7b', methods=['POST'])
def generate():
# Get data from the request
data = request.json
prompt = data.get('prompt', '')
messages = data.get('messages', [])
key = data.get('key', '')
# Call Mistral7B function
response, updated_messages, execution_time = Mistral7B(prompt, messages,key)
# Prepare the response
result = {
'response': response,
'messages': updated_messages,
'execution_time': execution_time
}
return jsonify(result)
@app.route('/chatgpt', methods=['POST'])
def chat():
# Get data from the request
data = request.json
user_message = data.get('message', '')
messages = data.get('messages', [])
# Call ChatGpt function
response, updated_messages, execution_time = ChatGpt(user_message, messages)
# Prepare the response
result = {
'response': response,
'messages': updated_messages,
'execution_time': execution_time
}
return jsonify(result)
@app.route('/news', methods=['GET'])
def get_news():
# Get data from the request
key = request.args.get('key', '')
cache_flag = request.args.get('cache', 'True').lower() == 'true'
# Call News function
news, error, execution_time = News(key, cache_flag)
# Prepare the response
result = {
'news': news,
'error': error,
'execution_time': execution_time
}
return jsonify(result)
@app.route('/web', methods=['GET'])
def Web():
key = request.args.get('prompt', '')
result = {
'response': Online_Scraper(key)
}
return jsonify(result)
@app.route('/imageneration', methods=['POST'])
def IMGEN():
data = request.json
prompt = data.get('prompt', '')
key = data.get('key', '')
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
headers = {"Authorization": f"Bearer {key}"}
return requests.post(API_URL, headers=headers, json={"inputs": prompt,}).content
@app.route('/generativeai', methods=['POST'])
def Genration():
try:
import google.generativeai as genai
generation_config = {
"temperature": 0.7,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 300,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
model = genai.GenerativeModel(
model_name="gemini-pro",
generation_config=generation_config,
safety_settings=safety_settings)
data = request.json
messages = data.get('messages', [])
key = data.get('key', '')
C=t()
genai.configure(api_key=key)
response = model.generate_content(messages)
# Prepare the response
result = {
'response': response.text,
'execution_time': t()-C
}
return jsonify(result)
except Exception as e:
result = {
'response': f"{e}",
'execution_time': t()-C
}
return jsonify(result)
@app.route('/realtime', methods=['POST'])
def GenrationRT():
try:
import google.generativeai as genai
generation_config = {
"temperature": 0.9,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
model = genai.GenerativeModel(
model_name="gemini-pro",
generation_config=generation_config,
safety_settings=safety_settings)
data = request.json
query = data.get('prompt', "hello ?")
messages = data.get('messages', [])
key = data.get('key', '')
C=t()
genai.configure(api_key=key)
response = RealTimeGemini(query,messages,model)
# Prepare the response
result = {
'response': response,
'execution_time': t()-C
}
return jsonify(result)
except Exception as e:
result = {
'response': f"{e}",
'execution_time': t()-C
}
return jsonify(result)
@app.route('/divyanshpizza', methods=['GET'])
def get_counters():
return jsonify(counter),jsonify({"data":str(listdir(r"static/data/"))})
if __name__ == '__main__':
app.run()
|