File size: 5,241 Bytes
a435037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import roc_auc_score, f1_score, jaccard_score, accuracy_score
import tensorflow as tf



# create prediction mask
def create_mask(pred_mask):
  if pred_mask.shape[-1] > 1:
      pred_mask = tf.argmax(pred_mask, axis=-1)
      pred_mask = pred_mask[..., tf.newaxis]
  
  return pred_mask[0]



def metric_copy(premask, groundtruth):
    seg_inv, gt_inv = np.logical_not(premask), np.logical_not(groundtruth)
    true_pos = float(np.logical_and(premask, groundtruth).sum())  # float for division
    true_neg = np.logical_and(seg_inv, gt_inv).sum()
    false_pos = np.logical_and(premask, gt_inv).sum()
    false_neg = np.logical_and(seg_inv, groundtruth).sum()
    f1 = 2 * true_pos / (2 * true_pos + false_pos + false_neg + 1e-6)
    cross = np.logical_and(premask, groundtruth)
    union = np.logical_or(premask, groundtruth)
    iou = np.sum(cross) / (np.sum(union) + 1e-6)
    if np.sum(cross) + np.sum(union) == 0:
        iou = 1
    return f1, iou



def show_prediction(img, pred):
    print("max_pred = ", np.max(pred), " min_pred = ", np.min(pred))
    plt.subplot(1,2,1)
    plt.imshow(img)
    plt.subplot(1,2,2)
    plt.imshow(pred, cmap='gray') #, vmin=0, vmax=1)
    plt.show()


def show_predictions(dataset=None, num=1):
  if dataset:
    for image, mask in dataset.take(num):
      pred_mask = model.predict(image)
      display([image[0], mask[0], create_mask(pred_mask)])
  else:
    print(sample_image.shape)
    print(sample_mask.shape)
    display([sample_image, sample_mask,
             create_mask(model.predict(sample_image[tf.newaxis, ...]))])



def display(display_list, reverseRGB = True):
  plt.figure(figsize=(4, 4))

  title = ['Input Image', 'True Mask', 'Predicted Mask']

  for i in range(len(display_list)):
    plt.subplot(1, len(display_list), i+1)
    plt.title(title[i])
    if reverseRGB:
        plt.imshow(tf.keras.utils.array_to_img(display_list[i][...,::-1]))
    else:
        plt.imshow(tf.keras.utils.array_to_img(display_list[i]))
    plt.axis('off')
  plt.show()


def get_gt_and_osn_folders(folder):
    folder_list = [folder]
    folder_list.append(folder+"_Facebook")
    folder_list.append(folder+"_Whatsapp")
    folder_list.append(folder+"_Weibo")
    folder_list.append(folder+"_Wechat")
    gt_folder = folder + "_GT"
    return gt_folder,folder_list

def get_gt_and_osn_folder(folder, osn):
    osn_folder = folder+osn
    gt_folder = folder + "_GT"
    return gt_folder,osn_folder


# plots the image + prediction + ground truth
def plot_img_pred_gt(img_path, pre_t, gt):
    print("INPUT plot_img_pred_gt:")
    print("  img_path: ", img_path)
    #get image
    img = cv2.imread(img_path)
    #plot image, prediction and mask
    plot_img_pred_gt_execute(img,pre_t, gt)

    
def plot_img_pred_gt_execute(img, pre_t, gt, DISCRETIZE_OUTPUT=True):
    #print("plot_img_pred_gt_execute(): pre_t.max: ", np.max(pre_t))
    #print("plot_img_pred_gt_execute(): pre_t.min: ", np.min(pre_t))
    if DISCRETIZE_OUTPUT:
        pre_t = pre_t.numpy()
        pre_t[pre_t > 0.5] = 1.0
        pre_t[pre_t <= 0.5] = 0.0
    plt.subplots(1,3,figsize=(10,10))
    plt.subplot(1,3,1)
    plt.imshow(img[...,::-1])
    plt.title("Original Image")
    plt.subplot(1,3,2)
    plt.imshow(pre_t, cmap='gray')
    #plt.imshow(pre_t>0.5, cmap='gray')
    plt.title("Prediction")
    plt.subplot(1,3,3)
    plt.imshow(gt, cmap='gray')
    plt.title("Ground Truth")
    plt.show()
    
    
def mask_bigger_fifty_perc(mask):
    mask_size = mask.size
    #print("mask.shape: ", mask.shape)
    #print("mask_size: ", mask_size)
    nr_points_in_mask = mask_size - (mask == 0.).sum()
    mask_cover_perc_of_img = nr_points_in_mask/mask_size
    #print("mask_cover_perc_of_img: ", mask_cover_perc_of_img)
    if mask_cover_perc_of_img>0.5:
        return True
    return False


#evaluation for one image (auc roc, f1, iou)
def eval_image(pre_t, gt, auc, f1, iou, acc):
    #df_out("pre_t_in evalimage",pre_t,True)

    pre = np.repeat(pre_t.numpy()[:,:,np.newaxis],3,2)
    H, W, _ = pre.shape
    Hg, Wg, C = gt.shape

    if mask_bigger_fifty_perc(gt):
        print("FLIP pre because mask > 50% of image")
        pre = 1 - pre
    
    if H != Hg or W != Wg:
        print("ERROR: values not matching:")
        print(f'H: {H}, W: {W}, C: {C}')
        print(f'Hg: {Hg}, Wg: {Wg}, C: {C}')
        gt = cv2.resize(gt, (W, H))
        gt[gt > 127] = 255
        gt[gt <= 127] = 0
            
    if np.max(gt) != np.min(gt):    
        auc.append(roc_auc_score((gt.reshape(H*W*C) / 255.).astype('int'), pre.reshape(H*W*C)))
    else:
        print("!!!!!!!!!!!!!! eval_image(): np.max(gt) != np.min(gt) !!!!!!!!!!!!")
    pre[pre>0.5] = 1.0
    pre[pre<=0.5] = 0.0
    
    #consider changing to: a, b = metric_copy(pre , gt > 127)
    #a, b = metric_copy(pre , gt / 255.) #old
    a, b = metric_copy(pre , gt)
        
    
    pre_ = tf.reshape(pre, [-1])
    gt_ = tf.reshape(gt / 255., [-1]).astype(tf.int32)
    acc_tmp = accuracy_score(pre_, gt_)
    acc.append(acc_tmp)
          
    f1.append(a)
    iou.append(b)
    #print('Evaluation: AUC: %5.4f, F1: %5.4f, IOU: %5.4f' % (np.mean(auc), np.mean(f1), np.mean(iou)))