File size: 1,752 Bytes
a08f3f8
 
 
 
 
 
 
 
 
 
 
4afa657
a08f3f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

# Import necessary libraries
import numpy as np
import joblib  # For loading the serialized model
import pandas as pd  # For data manipulation
from flask import Flask, request, jsonify  # For creating the Flask API

# Initialize Flask app with a name
superkart_api = Flask("superkart")

# Load the trained sales prediction model
model = joblib.load("final_model.joblib")

# Define a route for the home page
@superkart_api.get('/')
def home():
    return "Welcome to the SuperKart Sales Prediction API!"

# Define an endpoint to predict sales for a single product-store combination
@superkart_api.post('/v1/predict')
def predict_sales():
    # Get JSON data from the request
    data = request.get_json()

    # Extract relevant features from the input data. The order of the column names matters.
    sample = {
        'Product_Weight': data['Product_Weight'],
        'Product_Sugar_Content': data['Product_Sugar_Content'],
        'Product_Allocated_Area': data['Product_Allocated_Area'],
        'Product_MRP': data['Product_MRP'],
        'Store_Size': data['Store_Size'],
        'Store_Location_City_Type': data['Store_Location_City_Type'],
        'Store_Type': data['Store_Type'],
        'Product_Id_char': data['Product_Id_char'],
        'Store_Age_Years': data['Store_Age_Years'],
        'Product_Type_Category': data['Product_Type_Category']
    }

    # Convert the extracted data into a DataFrame
    input_data = pd.DataFrame([sample])

    # Make a sales prediction using the trained model
    prediction = model.predict(input_data).tolist()[0]

    # Return the prediction as a JSON response
    return jsonify({'Sales': prediction})


# Run the Flask app in debug mode
if __name__ == '__main__':
    superkart_api.run(debug=True)