Spaces:
Running
Running
File size: 1,752 Bytes
a08f3f8 4afa657 a08f3f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# Import necessary libraries
import numpy as np
import joblib # For loading the serialized model
import pandas as pd # For data manipulation
from flask import Flask, request, jsonify # For creating the Flask API
# Initialize Flask app with a name
superkart_api = Flask("superkart")
# Load the trained sales prediction model
model = joblib.load("final_model.joblib")
# Define a route for the home page
@superkart_api.get('/')
def home():
return "Welcome to the SuperKart Sales Prediction API!"
# Define an endpoint to predict sales for a single product-store combination
@superkart_api.post('/v1/predict')
def predict_sales():
# Get JSON data from the request
data = request.get_json()
# Extract relevant features from the input data. The order of the column names matters.
sample = {
'Product_Weight': data['Product_Weight'],
'Product_Sugar_Content': data['Product_Sugar_Content'],
'Product_Allocated_Area': data['Product_Allocated_Area'],
'Product_MRP': data['Product_MRP'],
'Store_Size': data['Store_Size'],
'Store_Location_City_Type': data['Store_Location_City_Type'],
'Store_Type': data['Store_Type'],
'Product_Id_char': data['Product_Id_char'],
'Store_Age_Years': data['Store_Age_Years'],
'Product_Type_Category': data['Product_Type_Category']
}
# Convert the extracted data into a DataFrame
input_data = pd.DataFrame([sample])
# Make a sales prediction using the trained model
prediction = model.predict(input_data).tolist()[0]
# Return the prediction as a JSON response
return jsonify({'Sales': prediction})
# Run the Flask app in debug mode
if __name__ == '__main__':
superkart_api.run(debug=True)
|