File size: 1,941 Bytes
2cbb646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeeb904
2cbb646
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

import streamlit as st
import requests

st.title("SuperKart Sales Predictor")

# Input fields for product and store data
Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66)
Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"])
Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, value=20.0)
Product_MRP = st.number_input("Product MRP", min_value=0.0, value=100.0)
Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"])
Store_Location_City_Type = st.selectbox("Store Location City Type", ["Urban", "Semi-Urban", "Tier 3"])
Store_Type = st.selectbox("Store Type", ["Type 1", "Type 2", "Type 3", "Type 4"])
Product_Id_char = st.selectbox("Product ID Prefix", ["FD", "DR", "NC"])  # Example prefixes
Store_Age_Years = st.number_input("Store Age (Years)", min_value=0, value=10)
Product_Type_Category = st.selectbox("Product Type Category", ["Food", "Drinks", "Non-Consumable"])  # Example categories

# Prepare data for POST request
product_data = {
    "Product_Weight": Product_Weight,
    "Product_Sugar_Content": Product_Sugar_Content,
    "Product_Allocated_Area": Product_Allocated_Area,
    "Product_MRP": Product_MRP,
    "Store_Size": Store_Size,
    "Store_Location_City_Type": Store_Location_City_Type,
    "Store_Type": Store_Type,
    "Product_Id_char": Product_Id_char,
    "Store_Age_Years": Store_Age_Years,
    "Product_Type_Category": Product_Type_Category
}

# Predict button and API call
if st.button("Predict", type='primary'):
    response = requests.post(
        "https://DD8943-superkart-regression-app.hf.space/v1/predict",
        json=product_data
    )
    if response.status_code == 200:
        result = response.json()
        predicted_sales = result["Sales"]
        st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}")
    else:
        st.error("Error in API request")