Spaces:
Sleeping
Sleeping
File size: 8,635 Bytes
c938124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import argparse
import logging
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from tqdm import tqdm
from utils import MODEL_CLASSES, get_intent_labels, get_slot_labels, init_logger, load_tokenizer
logger = logging.getLogger(__name__)
def get_device(pred_config):
return "cuda" if torch.cuda.is_available() and not pred_config.no_cuda else "cpu"
def get_args(pred_config):
args = torch.load(os.path.join(pred_config.model_dir, "training_args.bin"))
args.model_dir = 'JointBERT-CRF_PhoBERTencoder'
args.data_dir = 'PhoATIS'
return args
def load_model(pred_config, args, device):
# Check whether model exists
if not os.path.exists(pred_config.model_dir):
raise Exception("Model doesn't exists! Train first!")
try:
model = MODEL_CLASSES[args.model_type][1].from_pretrained(
args.model_dir, args=args, intent_label_lst=get_intent_labels(args), slot_label_lst=get_slot_labels(args)
)
model.to(device)
model.eval()
logger.info("***** Model Loaded *****")
except Exception:
raise Exception("Some model files might be missing...")
return model
def read_input_file(pred_config):
lines = []
with open(pred_config.input_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
words = line.split()
lines.append(words)
return lines
def convert_input_file_to_tensor_dataset(
lines,
pred_config,
args,
tokenizer,
pad_token_label_id,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True,
):
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
unk_token = tokenizer.unk_token
pad_token_id = tokenizer.pad_token_id
all_input_ids = []
all_attention_mask = []
all_token_type_ids = []
all_slot_label_mask = []
for words in lines:
tokens = []
slot_label_mask = []
for word in words:
word_tokens = tokenizer.tokenize(word)
if not word_tokens:
word_tokens = [unk_token] # For handling the bad-encoded word
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
slot_label_mask.extend([pad_token_label_id + 1] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > args.max_seq_len - special_tokens_count:
tokens = tokens[: (args.max_seq_len - special_tokens_count)]
slot_label_mask = slot_label_mask[: (args.max_seq_len - special_tokens_count)]
# Add [SEP] token
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
slot_label_mask += [pad_token_label_id]
# Add [CLS] token
tokens = [cls_token] + tokens
token_type_ids = [cls_token_segment_id] + token_type_ids
slot_label_mask = [pad_token_label_id] + slot_label_mask
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = args.max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
slot_label_mask = slot_label_mask + ([pad_token_label_id] * padding_length)
all_input_ids.append(input_ids)
all_attention_mask.append(attention_mask)
all_token_type_ids.append(token_type_ids)
all_slot_label_mask.append(slot_label_mask)
# Change to Tensor
all_input_ids = torch.tensor(all_input_ids, dtype=torch.long)
all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long)
all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long)
all_slot_label_mask = torch.tensor(all_slot_label_mask, dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_slot_label_mask)
return dataset
def predict(pred_config):
# load model and args
args = get_args(pred_config)
device = get_device(pred_config)
model = load_model(pred_config, args, device)
logger.info(args)
intent_label_lst = get_intent_labels(args)
slot_label_lst = get_slot_labels(args)
# Convert input file to TensorDataset
pad_token_label_id = args.ignore_index
tokenizer = load_tokenizer(args)
lines = read_input_file(pred_config)
dataset = convert_input_file_to_tensor_dataset(lines, pred_config, args, tokenizer, pad_token_label_id)
# Predict
sampler = SequentialSampler(dataset)
data_loader = DataLoader(dataset, sampler=sampler, batch_size=pred_config.batch_size)
all_slot_label_mask = None
intent_preds = None
slot_preds = None
for batch in tqdm(data_loader, desc="Predicting"):
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"intent_label_ids": None,
"slot_labels_ids": None,
}
if args.model_type != "distilbert":
inputs["token_type_ids"] = batch[2]
outputs = model(**inputs)
_, (intent_logits, slot_logits) = outputs[:2]
# Intent Prediction
if intent_preds is None:
intent_preds = intent_logits.detach().cpu().numpy()
else:
intent_preds = np.append(intent_preds, intent_logits.detach().cpu().numpy(), axis=0)
# Slot prediction
if slot_preds is None:
if args.use_crf:
# decode() in `torchcrf` returns list with best index directly
slot_preds = np.array(model.crf.decode(slot_logits))
else:
slot_preds = slot_logits.detach().cpu().numpy()
all_slot_label_mask = batch[3].detach().cpu().numpy()
else:
if args.use_crf:
slot_preds = np.append(slot_preds, np.array(model.crf.decode(slot_logits)), axis=0)
else:
slot_preds = np.append(slot_preds, slot_logits.detach().cpu().numpy(), axis=0)
all_slot_label_mask = np.append(all_slot_label_mask, batch[3].detach().cpu().numpy(), axis=0)
intent_preds = np.argmax(intent_preds, axis=1)
if not args.use_crf:
slot_preds = np.argmax(slot_preds, axis=2)
slot_label_map = {i: label for i, label in enumerate(slot_label_lst)}
slot_preds_list = [[] for _ in range(slot_preds.shape[0])]
for i in range(slot_preds.shape[0]):
for j in range(slot_preds.shape[1]):
if all_slot_label_mask[i, j] != pad_token_label_id:
slot_preds_list[i].append(slot_label_map[slot_preds[i][j]])
# Write to output file
with open(pred_config.output_file, "w", encoding="utf-8") as f:
for words, slot_preds, intent_pred in zip(lines, slot_preds_list, intent_preds):
line = ""
for word, pred in zip(words, slot_preds):
if pred == "O":
line = line + word + " "
else:
line = line + "[{}:{}] ".format(word, pred)
f.write("<{}> -> {}\n".format(intent_label_lst[intent_pred], line.strip()))
logger.info("Prediction Done!")
if __name__ == "__main__":
init_logger()
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", default="sample_pred_in.txt", type=str, help="Input file for prediction")
parser.add_argument("--output_file", default="sample_pred_out.txt", type=str, help="Output file for prediction")
parser.add_argument("--model_dir", default="./atis_model", type=str, help="Path to save, load model")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for prediction")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
pred_config = parser.parse_args()
predict(pred_config)
|