File size: 8,635 Bytes
c938124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import logging
import os

import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from tqdm import tqdm
from utils import MODEL_CLASSES, get_intent_labels, get_slot_labels, init_logger, load_tokenizer


logger = logging.getLogger(__name__)


def get_device(pred_config):
    return "cuda" if torch.cuda.is_available() and not pred_config.no_cuda else "cpu"


def get_args(pred_config):
    args = torch.load(os.path.join(pred_config.model_dir, "training_args.bin"))

    args.model_dir = 'JointBERT-CRF_PhoBERTencoder'
    args.data_dir = 'PhoATIS'

    return args


def load_model(pred_config, args, device):
    # Check whether model exists
    if not os.path.exists(pred_config.model_dir):
        raise Exception("Model doesn't exists! Train first!")

    try:
        model = MODEL_CLASSES[args.model_type][1].from_pretrained(
            args.model_dir, args=args, intent_label_lst=get_intent_labels(args), slot_label_lst=get_slot_labels(args)
        )
        model.to(device)
        model.eval()
        logger.info("***** Model Loaded *****")
    except Exception:
        raise Exception("Some model files might be missing...")

    return model


def read_input_file(pred_config):
    lines = []
    with open(pred_config.input_file, "r", encoding="utf-8") as f:
        for line in f:
            line = line.strip()
            words = line.split()
            lines.append(words)

    return lines


def convert_input_file_to_tensor_dataset(
    lines,
    pred_config,
    args,
    tokenizer,
    pad_token_label_id,
    cls_token_segment_id=0,
    pad_token_segment_id=0,
    sequence_a_segment_id=0,
    mask_padding_with_zero=True,
):
    # Setting based on the current model type
    cls_token = tokenizer.cls_token
    sep_token = tokenizer.sep_token
    unk_token = tokenizer.unk_token
    pad_token_id = tokenizer.pad_token_id

    all_input_ids = []
    all_attention_mask = []
    all_token_type_ids = []
    all_slot_label_mask = []

    for words in lines:
        tokens = []
        slot_label_mask = []
        for word in words:
            word_tokens = tokenizer.tokenize(word)
            if not word_tokens:
                word_tokens = [unk_token]  # For handling the bad-encoded word
            tokens.extend(word_tokens)
            # Use the real label id for the first token of the word, and padding ids for the remaining tokens
            slot_label_mask.extend([pad_token_label_id + 1] + [pad_token_label_id] * (len(word_tokens) - 1))

        # Account for [CLS] and [SEP]
        special_tokens_count = 2
        if len(tokens) > args.max_seq_len - special_tokens_count:
            tokens = tokens[: (args.max_seq_len - special_tokens_count)]
            slot_label_mask = slot_label_mask[: (args.max_seq_len - special_tokens_count)]

        # Add [SEP] token
        tokens += [sep_token]
        token_type_ids = [sequence_a_segment_id] * len(tokens)
        slot_label_mask += [pad_token_label_id]

        # Add [CLS] token
        tokens = [cls_token] + tokens
        token_type_ids = [cls_token_segment_id] + token_type_ids
        slot_label_mask = [pad_token_label_id] + slot_label_mask

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
        attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)

        # Zero-pad up to the sequence length.
        padding_length = args.max_seq_len - len(input_ids)
        input_ids = input_ids + ([pad_token_id] * padding_length)
        attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
        token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
        slot_label_mask = slot_label_mask + ([pad_token_label_id] * padding_length)

        all_input_ids.append(input_ids)
        all_attention_mask.append(attention_mask)
        all_token_type_ids.append(token_type_ids)
        all_slot_label_mask.append(slot_label_mask)

    # Change to Tensor
    all_input_ids = torch.tensor(all_input_ids, dtype=torch.long)
    all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long)
    all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long)
    all_slot_label_mask = torch.tensor(all_slot_label_mask, dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_slot_label_mask)

    return dataset


def predict(pred_config):
    # load model and args
    args = get_args(pred_config)
    device = get_device(pred_config)
    model = load_model(pred_config, args, device)
    logger.info(args)

    intent_label_lst = get_intent_labels(args)
    slot_label_lst = get_slot_labels(args)

    # Convert input file to TensorDataset
    pad_token_label_id = args.ignore_index
    tokenizer = load_tokenizer(args)
    lines = read_input_file(pred_config)
    dataset = convert_input_file_to_tensor_dataset(lines, pred_config, args, tokenizer, pad_token_label_id)

    # Predict
    sampler = SequentialSampler(dataset)
    data_loader = DataLoader(dataset, sampler=sampler, batch_size=pred_config.batch_size)

    all_slot_label_mask = None
    intent_preds = None
    slot_preds = None

    for batch in tqdm(data_loader, desc="Predicting"):
        batch = tuple(t.to(device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "intent_label_ids": None,
                "slot_labels_ids": None,
            }
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = batch[2]
            outputs = model(**inputs)
            _, (intent_logits, slot_logits) = outputs[:2]

            # Intent Prediction
            if intent_preds is None:
                intent_preds = intent_logits.detach().cpu().numpy()
            else:
                intent_preds = np.append(intent_preds, intent_logits.detach().cpu().numpy(), axis=0)

            # Slot prediction
            if slot_preds is None:
                if args.use_crf:
                    # decode() in `torchcrf` returns list with best index directly
                    slot_preds = np.array(model.crf.decode(slot_logits))
                else:
                    slot_preds = slot_logits.detach().cpu().numpy()
                all_slot_label_mask = batch[3].detach().cpu().numpy()
            else:
                if args.use_crf:
                    slot_preds = np.append(slot_preds, np.array(model.crf.decode(slot_logits)), axis=0)
                else:
                    slot_preds = np.append(slot_preds, slot_logits.detach().cpu().numpy(), axis=0)
                all_slot_label_mask = np.append(all_slot_label_mask, batch[3].detach().cpu().numpy(), axis=0)

    intent_preds = np.argmax(intent_preds, axis=1)

    if not args.use_crf:
        slot_preds = np.argmax(slot_preds, axis=2)

    slot_label_map = {i: label for i, label in enumerate(slot_label_lst)}
    slot_preds_list = [[] for _ in range(slot_preds.shape[0])]

    for i in range(slot_preds.shape[0]):
        for j in range(slot_preds.shape[1]):
            if all_slot_label_mask[i, j] != pad_token_label_id:
                slot_preds_list[i].append(slot_label_map[slot_preds[i][j]])

    # Write to output file
    with open(pred_config.output_file, "w", encoding="utf-8") as f:
        for words, slot_preds, intent_pred in zip(lines, slot_preds_list, intent_preds):
            line = ""
            for word, pred in zip(words, slot_preds):
                if pred == "O":
                    line = line + word + " "
                else:
                    line = line + "[{}:{}] ".format(word, pred)
            f.write("<{}> -> {}\n".format(intent_label_lst[intent_pred], line.strip()))

    logger.info("Prediction Done!")


if __name__ == "__main__":
    init_logger()
    parser = argparse.ArgumentParser()

    parser.add_argument("--input_file", default="sample_pred_in.txt", type=str, help="Input file for prediction")
    parser.add_argument("--output_file", default="sample_pred_out.txt", type=str, help="Output file for prediction")
    parser.add_argument("--model_dir", default="./atis_model", type=str, help="Path to save, load model")

    parser.add_argument("--batch_size", default=32, type=int, help="Batch size for prediction")
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")

    pred_config = parser.parse_args()
    predict(pred_config)