File size: 17,211 Bytes
2494b0a
 
 
a809035
2494b0a
a2df0c5
2494b0a
 
 
 
 
 
 
 
 
a2df0c5
2494b0a
 
 
a2df0c5
2494b0a
 
 
 
 
 
 
 
 
 
 
 
a2df0c5
2494b0a
 
 
 
 
 
 
 
a2df0c5
2494b0a
 
 
 
 
 
 
a2df0c5
2494b0a
 
 
 
 
 
 
a2df0c5
2494b0a
 
 
 
 
 
 
 
 
a2df0c5
2494b0a
 
 
a2df0c5
2494b0a
 
a2df0c5
a51722b
2494b0a
a51722b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# saves the openwebtext dataset to a binary file for training. following was helpful:
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py

import os
from tqdm import tqdm
import numpy as np
import tiktoken
from datasets import load_dataset # huggingface datasets

# number of workers in .map() call
# good number to use is ~order number of cpu cores // 2
num_proc = 8

# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
dataset = load_dataset("openwebtext")

# owt by default only contains the 'train' split, so create a test split
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val

# this results in:
# >>> split_dataset
# DatasetDict({
#     train: Dataset({
#         features: ['text'],
#         num_rows: 8009762
#     })
#     val: Dataset({
#         features: ['text'],
#         num_rows: 4007
#     })
# })

# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
enc = tiktoken.get_encoding("gpt2")
def process(example):
    ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
    ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
    # note: I think eot should be prepended not appended... hmm. it's called "eot" though...
    out = {'ids': ids, 'len': len(ids)}
    return out

# tokenize the dataset
tokenized = split_dataset.map(
    process,
    remove_columns=['text'],
    desc="tokenizing the splits",
    num_proc=num_proc,
)

# concatenate all the ids in each dataset into one large file we can use for training
for split, dset in tokenized.items():
    arr_len = np.sum(dset['len'])
    filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
    dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
    arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
    total_batches = 1024

    idx = 0
    for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
        # Batch together samples for faster write
        batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
        arr_batch = np.concatenate(batch['ids'])
        # Write into mmap
        arr[idx : idx + len(arr_batch)] = arr_batch
        idx += len(arr_batch)
    arr.flush()

# train.bin is ~17GB, val.bin ~8.5MB
# train has ~9B tokens (9,035,582,198)
# val has ~4M tokens (4,434,897)

# to read the bin files later, e.g. with numpy:
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')


##########################################################################################

"""
This training script can be run both on a single gpu in debug mode,
and also in a larger training run with distributed data parallel (ddp).

To run on a single GPU, example:
$ python train.py --batch_size=32 --compile=False

To run with DDP on 4 gpus on 1 node, example:
$ torchrun --standalone --nproc_per_node=4 train.py

To run with DDP on 4 gpus across 2 nodes, example:
- Run on the first (master) node with example IP 123.456.123.456:
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py
- Run on the worker node:
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py
(If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1)
"""

import os
import time
import math
import pickle
from contextlib import nullcontext

import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group

from model import GPTConfig, GPT

# -----------------------------------------------------------------------------
# default config values designed to train a gpt2 (124M) on OpenWebText
# I/O
out_dir = 'out'
eval_interval = 2000
log_interval = 1
eval_iters = 200
eval_only = False # if True, script exits right after the first eval
always_save_checkpoint = True # if True, always save a checkpoint after each eval
init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
# wandb logging
wandb_log = False # disabled by default
wandb_project = 'owt'
wandb_run_name = 'gpt2' # 'run' + str(time.time())
# data
dataset = 'openwebtext'
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
block_size = 1024
# model
n_layer = 12
n_head = 12
n_embd = 768
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
bias = False # do we use bias inside LayerNorm and Linear layers?
# adamw optimizer
learning_rate = 6e-4 # max learning rate
max_iters = 600000 # total number of training iterations
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
# learning rate decay settings
decay_lr = True # whether to decay the learning rate
warmup_iters = 2000 # how many steps to warm up for
lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
# DDP settings
backend = 'nccl' # 'nccl', 'gloo', etc.
# system
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
dtype = 'bfloat16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
compile = True # use PyTorch 2.0 to compile the model to be faster
# -----------------------------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
exec(open('configurator.py').read()) # overrides from command line or config file
config = {k: globals()[k] for k in config_keys} # will be useful for logging
# -----------------------------------------------------------------------------

# various inits, derived attributes, I/O setup
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
    init_process_group(backend=backend)
    ddp_rank = int(os.environ['RANK'])
    ddp_local_rank = int(os.environ['LOCAL_RANK'])
    ddp_world_size = int(os.environ['WORLD_SIZE'])
    device = f'cuda:{ddp_local_rank}'
    torch.cuda.set_device(device)
    master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
    seed_offset = ddp_rank # each process gets a different seed
    assert gradient_accumulation_steps % torch.cuda.device_count() == 0
    gradient_accumulation_steps //= torch.cuda.device_count()
else:
    # if not ddp, we are running on a single gpu, and one process
    master_process = True
    seed_offset = 0
    ddp_world_size = 1
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
print(f"tokens per iteration will be: {tokens_per_iter:,}")

if master_process:
    os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
# note: float16 data type will automatically use a GradScaler
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.cuda.amp.autocast(dtype=torch.float16)

# poor man's data loader
data_dir = os.path.join('data', dataset)
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
def get_batch(split):
    data = train_data if split == 'train' else val_data
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
    y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
    if device_type == 'cuda':
        # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
        x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
    else:
        x, y = x.to(device), y.to(device)
    return x, y

# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
iter_num = 0
best_val_loss = 1e9

# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.pkl')
meta_vocab_size = None
if os.path.exists(meta_path):
    with open(meta_path, 'rb') as f:
        meta = pickle.load(f)
    meta_vocab_size = meta['vocab_size']
    print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")

# model init
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
                  bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
if init_from == 'scratch':
    # init a new model from scratch
    print("Initializing a new model from scratch")
    # determine the vocab size we'll use for from-scratch training
    if meta_vocab_size is None:
        print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
    model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
elif init_from == 'resume':
    print(f"Resuming training from {out_dir}")
    # resume training from a checkpoint.
    ckpt_path = os.path.join(out_dir, 'ckpt.pt')
    checkpoint = torch.load(ckpt_path, map_location=device)
    checkpoint_model_args = checkpoint['model_args']
    # force these config attributes to be equal otherwise we can't even resume training
    # the rest of the attributes (e.g. dropout) can stay as desired from command line
    for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
        model_args[k] = checkpoint_model_args[k]
    # create the model
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
    state_dict = checkpoint['model']
    # fix the keys of the state dictionary :(
    # honestly no idea how checkpoints sometimes get this prefix, have to debug more
    unwanted_prefix = '_orig_mod.'
    for k,v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
    model.load_state_dict(state_dict)
    iter_num = checkpoint['iter_num']
    best_val_loss = checkpoint['best_val_loss']
elif init_from.startswith('gpt2'):
    print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
    # initialize from OpenAI GPT-2 weights
    override_args = dict(dropout=dropout)
    model = GPT.from_pretrained(init_from, override_args)
    # read off the created config params, so we can store them into checkpoint correctly
    for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
        model_args[k] = getattr(model.config, k)
# crop down the model block size if desired, using model surgery
if block_size < model.config.block_size:
    model.crop_block_size(block_size)
    model_args['block_size'] = block_size # so that the checkpoint will have the right value
model.to(device)

# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))

# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
if init_from == 'resume':
    optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None # free up memory

# compile the model
if compile:
    print("compiling the model... (takes a ~minute)")
    unoptimized_model = model
    model = torch.compile(model) # requires PyTorch 2.0

# wrap model into DDP container
if ddp:
    model = DDP(model, device_ids=[ddp_local_rank])

# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            with ctx:
                logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    model.train()
    return out

# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
    # 1) linear warmup for warmup_iters steps
    if it < warmup_iters:
        return learning_rate * it / warmup_iters
    # 2) if it > lr_decay_iters, return min learning rate
    if it > lr_decay_iters:
        return min_lr
    # 3) in between, use cosine decay down to min learning rate
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
    return min_lr + coeff * (learning_rate - min_lr)

# logging
if wandb_log and master_process:
    import wandb
    wandb.init(project=wandb_project, name=wandb_run_name, config=config)

# training loop
X, Y = get_batch('train') # fetch the very first batch
t0 = time.time()
local_iter_num = 0 # number of iterations in the lifetime of this process
raw_model = model.module if ddp else model # unwrap DDP container if needed
running_mfu = -1.0
while True:

    # determine and set the learning rate for this iteration
    lr = get_lr(iter_num) if decay_lr else learning_rate
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

    # evaluate the loss on train/val sets and write checkpoints
    if iter_num % eval_interval == 0 and master_process:
        losses = estimate_loss()
        print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
        if wandb_log:
            wandb.log({
                "iter": iter_num,
                "train/loss": losses['train'],
                "val/loss": losses['val'],
                "lr": lr,
                "mfu": running_mfu*100, # convert to percentage
            })
        if losses['val'] < best_val_loss or always_save_checkpoint:
            best_val_loss = losses['val']
            if iter_num > 0:
                checkpoint = {
                    'model': raw_model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'model_args': model_args,
                    'iter_num': iter_num,
                    'best_val_loss': best_val_loss,
                    'config': config,
                }
                print(f"saving checkpoint to {out_dir}")
                torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
    if iter_num == 0 and eval_only:
        break

    # forward backward update, with optional gradient accumulation to simulate larger batch size
    # and using the GradScaler if data type is float16
    for micro_step in range(gradient_accumulation_steps):
        if ddp:
            # in DDP training we only need to sync gradients at the last micro step.
            # the official way to do this is with model.no_sync() context manager, but
            # I really dislike that this bloats the code and forces us to repeat code
            # looking at the source of that context manager, it just toggles this variable
            model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
        with ctx:
            logits, loss = model(X, Y)
            loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
        # immediately async prefetch next batch while model is doing the forward pass on the GPU
        X, Y = get_batch('train')
        # backward pass, with gradient scaling if training in fp16
        scaler.scale(loss).backward()
    # clip the gradient
    if grad_clip != 0.0:
        scaler.unscale_(optimizer)
        torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
    # step the optimizer and scaler if training in fp16
    scaler.step(optimizer)
    scaler.update()
    # flush the gradients as soon as we can, no need for this memory anymore
    optimizer.zero_grad(set_to_none=True)

    # timing and logging
    t1 = time.time()
    dt = t1 - t0
    t0 = t1
    if iter_num % log_interval == 0 and master_process:
        # get loss as float. note: this is a CPU-GPU sync point
        # scale up to undo the division above, approximating the true total loss (exact would have been a sum)
        lossf = loss.item() * gradient_accumulation_steps
        if local_iter_num >= 5: # let the training loop settle a bit
            mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
            running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
        print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
    iter_num += 1
    local_iter_num += 1

    # termination conditions
    if iter_num > max_iters:
        break

if ddp:
    destroy_process_group()