Spaces:
Running
on
A10G
Running
on
A10G
File size: 18,733 Bytes
45d16e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import logging
import random
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from video_llama.common.registry import registry
from video_llama.models.blip2 import Blip2Base, disabled_train
from video_llama.models.modeling_llama import LlamaForCausalLM
# from video_llama.models.Qformer import BertEncoder
from transformers import LlamaTokenizer,BertConfig
# from transformers.models.bert.modeling_bert import BertEncoder
import einops
import copy
import os
from video_llama.models.Qformer import BertConfig, BertLMHeadModel
# from flamingo_pytorch import PerceiverResampler
@registry.register_model("video_llama")
class VideoLLAMA(Blip2Base):
"""
BLIP2 GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_vicuna": "configs/models/video_llama.yaml",
}
@classmethod
def init_video_Qformer(cls, num_query_token, vision_width,num_hidden_layers =2):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.num_hidden_layers = num_hidden_layers
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 1
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
def __init__(
self,
vit_model="eva_clip_g",
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
freeze_qformer=True,
num_query_token=32,
llama_model="",
prompt_path="",
prompt_template="",
max_txt_len=32,
end_sym='\n',
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
frozen_llama_proj=True,
llama_proj_model='',
fusion_header_type= "seqTransf",
max_frame_pos= 32,
fusion_head_layers = 2,
num_video_query_token = 32,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.low_resource = low_resource
print('Loading VIT')
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print('Loading VIT Done')
print('Loading Q-Former')
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.load_from_pretrained(url_or_filename=q_former_model)
if freeze_qformer:
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.Qformer = self.Qformer.eval()
self.Qformer.train = disabled_train
self.query_tokens.requires_grad = False
logging.info("freeze Qformer")
logging.info('Loading Q-Former Done')
logging.info('Loading LLAMA Tokenizer')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False, use_auth_token=os.environ["API_TOKEN"])
if self.llama_tokenizer.pad_token is None:
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
DEFAULT_IMAGE_PATCH_TOKEN = '<ImageHere>'
self.llama_tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.IMAGE_PATCH_TOKEN_ID = self.llama_tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN]
logging.info('Loading LLAMA Model')
if self.low_resource:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map={'': device_8bit},
use_auth_token=os.environ["API_TOKEN"]
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,use_auth_token=os.environ["API_TOKEN"]
)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
logging.info('Loading LLAMA Done')
logging.info('Loading LLAMA proj')
self.llama_proj = nn.Linear(
self.Qformer.config.hidden_size, self.llama_model.config.hidden_size
)
if llama_proj_model:
print("load llama proj weight: {}".format(llama_proj_model))
llama_proj_weight = torch.load(llama_proj_model, map_location="cpu")
msg = model.load_state_dict(llama_proj_weight['model'], strict=False)
if frozen_llama_proj:
# todo frozen llama_proj
for name, param in self.llama_proj.named_parameters():
param.requires_grad = False
logging.info('LLAMA proj is frozen')
else:
for name, param in self.llama_proj.named_parameters():
param.requires_grad = True
logging.info('LLAMA proj is not frozen')
logging.info('Loading llama_proj Done')
self.max_txt_len = max_txt_len
self.end_sym = end_sym
if prompt_path:
with open(prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt]
self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
self.video_frame_position_embedding = nn.Embedding(max_frame_pos, self.Qformer.config.hidden_size)
self.num_video_query_token = num_video_query_token
self.video_Qformer,self.video_query_tokens = self.init_video_Qformer(num_query_token = num_video_query_token,\
vision_width=self.Qformer.config.hidden_size, num_hidden_layers =2)
self.video_Qformer.cls = None
self.video_Qformer.bert.embeddings.word_embeddings = None
self.video_Qformer.bert.embeddings.position_embeddings = None
for layer in self.video_Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
def vit_to_cpu(self):
self.ln_vision.to("cpu")
self.ln_vision.float()
self.visual_encoder.to("cpu")
self.visual_encoder.float()
def encode_img(self, image):
device = image.device
# if self.low_resource:
# self.vit_to_cpu()
# image = image.to("cpu")
# input shape b,c,t,h,w
batch_size,_,time_length,_,_ = image.size()
image = einops.rearrange(image, 'b c t h w -> (b t) c h w')
with self.maybe_autocast():
# embed image features with blip2, out: (b t) q h
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# add frame_pos embedding
position_ids = torch.arange(time_length, dtype=torch.long, device=query_tokens.device)
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
frame_position_embeddings = self.video_frame_position_embedding(position_ids)
q_hidden_state = query_output.last_hidden_state
frame_position_embeddings = frame_position_embeddings.unsqueeze(-2)
frame_hidden_state = einops.rearrange(q_hidden_state, '(b t) q h -> b t q h',b=batch_size,t=time_length)
frame_hidden_state = frame_position_embeddings + frame_hidden_state
# frame attention
frame_hidden_state = einops.rearrange(frame_hidden_state, 'b t q h -> b (t q) h',b=batch_size,t=time_length)
frame_atts = torch.ones(frame_hidden_state.size()[:-1], dtype=torch.long).to(device)
video_query_tokens = self.video_query_tokens.expand(frame_hidden_state.shape[0], -1, -1)
# print('attention')
# print(video_query_tokens.size())
# print(frame_hidden_state.size())
video_query_output = self.video_Qformer.bert(
query_embeds=video_query_tokens,
encoder_hidden_states=frame_hidden_state,
encoder_attention_mask=frame_atts,
return_dict=True,
)
video_hidden = video_query_output.last_hidden_state
inputs_llama = self.llama_proj(video_hidden)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image_embeds.device)
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, atts_img, prompt):
if prompt:
batch_size = img_embeds.shape[0]
# print(prompt)
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
else:
return img_embeds, atts_img
def forward(self, samples):
if 'conv_type' in samples.keys() and samples['conv_type']=='multi':
num_patch_tokens = self.num_video_query_token
im_patch_token_id = self.IMAGE_PATCH_TOKEN_ID
image = samples["images"]
input_ids = samples['input_ids']
if len(image.size())==4:
time = 1
image = einops.repeat(image, 'b c h w -> b c t h w',t = time)
img_embeds, atts_img = self.encode_img(image)
temp_input_ids = copy.deepcopy(input_ids)
temp_input_ids[temp_input_ids == im_patch_token_id] = 0
temp_input_embedding = self.llama_model.model.embed_tokens(temp_input_ids)
new_input_embeds=[]
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(input_ids, temp_input_embedding):
cur_image_features = img_embeds[cur_image_idx]
if (cur_input_ids == im_patch_token_id).sum() != num_patch_tokens:
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
masked_indices = torch.where(cur_input_ids == im_patch_token_id)[0]
mask_index_start = masked_indices[0]
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patch_tokens, device=masked_indices.device, dtype=masked_indices.dtype)).any():
raise ValueError("The image patch tokens should be consecutive.")
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patch_tokens:]), dim=0)
new_input_embeds.append(cur_new_input_embeds)
cur_image_idx+=1
inputs_embeds = torch.stack(new_input_embeds, dim=0)
targets = samples['labels']
attention_mask = samples['attention_mask']
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
else:
image = samples["image"]
if len(image.size()) != 5:
time = 1
image = einops.repeat(image, 'b c h w -> b c t h w',t = time)
img_embeds, atts_img = self.encode_img(image)
if self.prompt_list:
prompt = random.choice(self.prompt_list)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompt)
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["text_input"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(image.device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1]+1],
dtype=torch.long).to(image.device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
atts_bos = atts_img[:, :1]
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
llama_model = cfg.get("llama_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
freeze_qformer = cfg.get("freeze_qformer", True)
low_resource = cfg.get("low_resource", False)
device_8bit = cfg.get("device_8bit", 0)
prompt_path = cfg.get("prompt_path", "")
prompt_template = cfg.get("prompt_template", "")
max_txt_len = cfg.get("max_txt_len", 32)
end_sym = cfg.get("end_sym", '\n')
frozen_llama_proj = cfg.get("frozen_llama_proj", True)
llama_proj_model = cfg.get("llama_proj_model", '')
fusion_header_type = cfg.get("fusion_header_type", 'seqTransf')
max_frame_pos = cfg.get("max_frame_pos", 32)
fusion_head_layers = cfg.get("fusion_head_layers", 2)
num_video_query_token = cfg.get("num_video_query_token", 32)
model = cls(
vit_model=vit_model,
q_former_model=q_former_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
freeze_qformer=freeze_qformer,
num_query_token=num_query_token,
llama_model=llama_model,
prompt_path=prompt_path,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
end_sym=end_sym,
low_resource=low_resource,
device_8bit=device_8bit,
fusion_header_type=fusion_header_type,
max_frame_pos=max_frame_pos,
fusion_head_layers=fusion_head_layers,
frozen_llama_proj=frozen_llama_proj,
num_video_query_token=num_video_query_token
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
return model
|