Spaces:
Runtime error
Runtime error
File size: 1,389 Bytes
bfadcb1 33c8ccf c27e90c 33c8ccf 36c571c 75d6c8e 0b3461a 36c571c 736f9af c27e90c 36c571c 75d6c8e 0106d1b 2dd6b21 9ba3db4 75d6c8e c27e90c 9ba3db4 75d6c8e 30d4d06 75d6c8e 30d4d06 c27e90c 30d4d06 75d6c8e 30d4d06 d69a484 c27e90c 75d6c8e 2dd6b21 75d6c8e 2dd6b21 75d6c8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import subprocess
# Install transformers package
subprocess.run(['pip', 'install', 'transformers'])
# Import transformers module
from transformers import pipeline
import streamlit as st
# Summarization
def summarization(text):
text_model = pipeline("text-generation", model="ainize/bart-base-cnn")
summary = text_model(text, max_length=100, temperature=1.0)[0]["generated_text"]
return summary
# Sentiment Classification
def sentiment_classification(summary):
sentiment_model = pipeline("text-classification", model="wxrrrrrrr/finetunde_sentiment_analysis")
result = sentiment_model(summary, max_length=100, truncation=True)[0]['label']
if result != 'negative':
result = 'positive'
return result
def main():
st.set_page_config(page_title="Your Text Analysis", page_icon="🦜")
st.header("Tell me your comments!")
text_input = st.text_input("Enter your text here:")
if text_input:
# Stage 1: Summarization
st.text('Processing text...')
summary = summarization(text_input)
# st.write(summary)
# Stage 2: Sentiment Classification
st.text('Analyzing sentiment...')
sentiment = sentiment_classification(summary)
st.write(sentiment)
# Display the classification result
st.write("Sentiment:", sentiment)
if __name__ == '__main__':
main() |