File size: 15,138 Bytes
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import torch
import torch.nn as nn
import numpy as np
from torchvision.transforms import Normalize


def denormalize(x):
    """Reverses the imagenet normalization applied to the input.

    Args:
        x (torch.Tensor - shape(N,3,H,W)): input tensor

    Returns:
        torch.Tensor - shape(N,3,H,W): Denormalized input
    """
    mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
    std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
    return x * std + mean

def get_activation(name, bank):
    def hook(model, input, output):
        bank[name] = output
    return hook


class Resize(object):
    """Resize sample to given size (width, height).
    """

    def __init__(
        self,
        width,
        height,
        resize_target=True,
        keep_aspect_ratio=False,
        ensure_multiple_of=1,
        resize_method="lower_bound",
    ):
        """Init.
        Args:
            width (int): desired output width
            height (int): desired output height
            resize_target (bool, optional):
                True: Resize the full sample (image, mask, target).
                False: Resize image only.
                Defaults to True.
            keep_aspect_ratio (bool, optional):
                True: Keep the aspect ratio of the input sample.
                Output sample might not have the given width and height, and
                resize behaviour depends on the parameter 'resize_method'.
                Defaults to False.
            ensure_multiple_of (int, optional):
                Output width and height is constrained to be multiple of this parameter.
                Defaults to 1.
            resize_method (str, optional):
                "lower_bound": Output will be at least as large as the given size.
                "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
                "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
                Defaults to "lower_bound".
        """
        print("Params passed to Resize transform:")
        print("\twidth: ", width)
        print("\theight: ", height)
        print("\tresize_target: ", resize_target)
        print("\tkeep_aspect_ratio: ", keep_aspect_ratio)
        print("\tensure_multiple_of: ", ensure_multiple_of)
        print("\tresize_method: ", resize_method)

        self.__width = width
        self.__height = height

        self.__keep_aspect_ratio = keep_aspect_ratio
        self.__multiple_of = ensure_multiple_of
        self.__resize_method = resize_method

    def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
        y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)

        if max_val is not None and y > max_val:
            y = (np.floor(x / self.__multiple_of)
                 * self.__multiple_of).astype(int)

        if y < min_val:
            y = (np.ceil(x / self.__multiple_of)
                 * self.__multiple_of).astype(int)

        return y

    def get_size(self, width, height):
        # determine new height and width
        scale_height = self.__height / height
        scale_width = self.__width / width

        if self.__keep_aspect_ratio:
            if self.__resize_method == "lower_bound":
                # scale such that output size is lower bound
                if scale_width > scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "upper_bound":
                # scale such that output size is upper bound
                if scale_width < scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "minimal":
                # scale as least as possbile
                if abs(1 - scale_width) < abs(1 - scale_height):
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            else:
                raise ValueError(
                    f"resize_method {self.__resize_method} not implemented"
                )

        if self.__resize_method == "lower_bound":
            new_height = self.constrain_to_multiple_of(
                scale_height * height, min_val=self.__height
            )
            new_width = self.constrain_to_multiple_of(
                scale_width * width, min_val=self.__width
            )
        elif self.__resize_method == "upper_bound":
            new_height = self.constrain_to_multiple_of(
                scale_height * height, max_val=self.__height
            )
            new_width = self.constrain_to_multiple_of(
                scale_width * width, max_val=self.__width
            )
        elif self.__resize_method == "minimal":
            new_height = self.constrain_to_multiple_of(scale_height * height)
            new_width = self.constrain_to_multiple_of(scale_width * width)
        else:
            raise ValueError(
                f"resize_method {self.__resize_method} not implemented")

        return (new_width, new_height)

    def __call__(self, x):
        width, height = self.get_size(*x.shape[-2:][::-1])
        return nn.functional.interpolate(x, (height, width), mode='bilinear', align_corners=True)

class PrepForMidas(object):
    def __init__(self, resize_mode="minimal", keep_aspect_ratio=True, img_size=384, do_resize=True):
        if isinstance(img_size, int):
            img_size = (img_size, img_size)
        net_h, net_w = img_size
        self.normalization = Normalize(
            mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        self.resizer = Resize(net_w, net_h, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=32, resize_method=resize_mode) \
            if do_resize else nn.Identity()

    def __call__(self, x):
        return self.normalization(self.resizer(x))


class MidasCore(nn.Module):
    def __init__(self, midas, trainable=False, fetch_features=True, layer_names=('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1'), freeze_bn=False, keep_aspect_ratio=True,
                 img_size=384, **kwargs):
        """Midas Base model used for multi-scale feature extraction.

        Args:
            midas (torch.nn.Module): Midas model.
            trainable (bool, optional): Train midas model. Defaults to False.
            fetch_features (bool, optional): Extract multi-scale features. Defaults to True.
            layer_names (tuple, optional): Layers used for feature extraction. Order = (head output features, last layer features, ...decoder features). Defaults to ('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1').
            freeze_bn (bool, optional): Freeze BatchNorm. Generally results in better finetuning performance. Defaults to False.
            keep_aspect_ratio (bool, optional): Keep the aspect ratio of input images while resizing. Defaults to True.
            img_size (int, tuple, optional): Input resolution. Defaults to 384.
        """
        super().__init__()
        self.core = midas
        self.output_channels = None
        self.core_out = {}
        self.trainable = trainable
        self.fetch_features = fetch_features
        # midas.scratch.output_conv = nn.Identity()
        self.handles = []
        # self.layer_names = ['out_conv','l4_rn', 'r4', 'r3', 'r2', 'r1']
        self.layer_names = layer_names

        self.set_trainable(trainable)
        self.set_fetch_features(fetch_features)

        self.prep = PrepForMidas(keep_aspect_ratio=keep_aspect_ratio,
                                 img_size=img_size, do_resize=kwargs.get('do_resize', True))

        if freeze_bn:
            self.freeze_bn()

    def set_trainable(self, trainable):
        self.trainable = trainable
        if trainable:
            self.unfreeze()
        else:
            self.freeze()
        return self

    def set_fetch_features(self, fetch_features):
        self.fetch_features = fetch_features
        if fetch_features:
            if len(self.handles) == 0:
                self.attach_hooks(self.core)
        else:
            self.remove_hooks()
        return self

    def freeze(self):
        for p in self.parameters():
            p.requires_grad = False
        self.trainable = False
        return self

    def unfreeze(self):
        for p in self.parameters():
            p.requires_grad = True
        self.trainable = True
        return self

    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
        return self

    def forward(self, x, denorm=False, return_rel_depth=False):
        with torch.no_grad():
            if denorm:
                x = denormalize(x)
            x = self.prep(x)
            # print("Shape after prep: ", x.shape)

        with torch.set_grad_enabled(self.trainable):

            # print("Input size to Midascore", x.shape)
            rel_depth = self.core(x)
            # print("Output from midas shape", rel_depth.shape)
            if not self.fetch_features:
                return rel_depth
        out = [self.core_out[k] for k in self.layer_names]

        if return_rel_depth:
            return rel_depth, out
        return out

    def get_rel_pos_params(self):
        for name, p in self.core.pretrained.named_parameters():
            if "relative_position" in name:
                yield p

    def get_enc_params_except_rel_pos(self):
        for name, p in self.core.pretrained.named_parameters():
            if "relative_position" not in name:
                yield p

    def freeze_encoder(self, freeze_rel_pos=False):
        if freeze_rel_pos:
            for p in self.core.pretrained.parameters():
                p.requires_grad = False
        else:
            for p in self.get_enc_params_except_rel_pos():
                p.requires_grad = False
        return self

    def attach_hooks(self, midas):
        if len(self.handles) > 0:
            self.remove_hooks()
        if "out_conv" in self.layer_names:
            self.handles.append(list(midas.scratch.output_conv.children())[
                                3].register_forward_hook(get_activation("out_conv", self.core_out)))
        if "r4" in self.layer_names:
            self.handles.append(midas.scratch.refinenet4.register_forward_hook(
                get_activation("r4", self.core_out)))
        if "r3" in self.layer_names:
            self.handles.append(midas.scratch.refinenet3.register_forward_hook(
                get_activation("r3", self.core_out)))
        if "r2" in self.layer_names:
            self.handles.append(midas.scratch.refinenet2.register_forward_hook(
                get_activation("r2", self.core_out)))
        if "r1" in self.layer_names:
            self.handles.append(midas.scratch.refinenet1.register_forward_hook(
                get_activation("r1", self.core_out)))
        if "l4_rn" in self.layer_names:
            self.handles.append(midas.scratch.layer4_rn.register_forward_hook(
                get_activation("l4_rn", self.core_out)))

        return self

    def remove_hooks(self):
        for h in self.handles:
            h.remove()
        return self

    def __del__(self):
        self.remove_hooks()

    def set_output_channels(self, model_type):
        self.output_channels = MIDAS_SETTINGS[model_type]

    @staticmethod
    def build(midas_model_type="DPT_BEiT_L_384", train_midas=False, use_pretrained_midas=True, fetch_features=False, freeze_bn=True, force_keep_ar=False, force_reload=False, **kwargs):
        if midas_model_type not in MIDAS_SETTINGS:
            raise ValueError(
                f"Invalid model type: {midas_model_type}. Must be one of {list(MIDAS_SETTINGS.keys())}")
        if "img_size" in kwargs:
            kwargs = MidasCore.parse_img_size(kwargs)
        img_size = kwargs.pop("img_size", [384, 384])
        print("img_size", img_size)
        midas = torch.hub.load("intel-isl/MiDaS", midas_model_type,
                               pretrained=use_pretrained_midas, force_reload=force_reload)
        kwargs.update({'keep_aspect_ratio': force_keep_ar})
        midas_core = MidasCore(midas, trainable=train_midas, fetch_features=fetch_features,
                               freeze_bn=freeze_bn, img_size=img_size, **kwargs)
        midas_core.set_output_channels(midas_model_type)
        return midas_core

    @staticmethod
    def build_from_config(config):
        return MidasCore.build(**config)

    @staticmethod
    def parse_img_size(config):
        assert 'img_size' in config
        if isinstance(config['img_size'], str):
            assert "," in config['img_size'], "img_size should be a string with comma separated img_size=H,W"
            config['img_size'] = list(map(int, config['img_size'].split(",")))
            assert len(
                config['img_size']) == 2, "img_size should be a string with comma separated img_size=H,W"
        elif isinstance(config['img_size'], int):
            config['img_size'] = [config['img_size'], config['img_size']]
        else:
            assert isinstance(config['img_size'], list) and len(
                config['img_size']) == 2, "img_size should be a list of H,W"
        return config


nchannels2models = {
    tuple([256]*5): ["DPT_BEiT_L_384", "DPT_BEiT_L_512", "DPT_BEiT_B_384", "DPT_SwinV2_L_384", "DPT_SwinV2_B_384", "DPT_SwinV2_T_256", "DPT_Large", "DPT_Hybrid"],
    (512, 256, 128, 64, 64): ["MiDaS_small"]
}

# Model name to number of output channels
MIDAS_SETTINGS = {m: k for k, v in nchannels2models.items()
                  for m in v
                  }