File size: 25,549 Bytes
186c7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/*
 * Copyright (C) 2023, Inria
 * GRAPHDECO research group, https://team.inria.fr/graphdeco
 * All rights reserved.
 *
 * This software is free for non-commercial, research and evaluation use 
 * under the terms of the LICENSE.md file.
 *
 * For inquiries contact  george.drettakis@inria.fr
 */

#include "backward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;

// Backward pass for conversion of spherical harmonics to RGB for
// each Gaussian.
__device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs)
{
	// Compute intermediate values, as it is done during forward
	glm::vec3 pos = means[idx];
	glm::vec3 dir_orig = pos - campos;
	glm::vec3 dir = dir_orig / glm::length(dir_orig);

	glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;

	// Use PyTorch rule for clamping: if clamping was applied,
	// gradient becomes 0.
	glm::vec3 dL_dRGB = dL_dcolor[idx];
	dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1;
	dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1;
	dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1;

	glm::vec3 dRGBdx(0, 0, 0);
	glm::vec3 dRGBdy(0, 0, 0);
	glm::vec3 dRGBdz(0, 0, 0);
	float x = dir.x;
	float y = dir.y;
	float z = dir.z;

	// Target location for this Gaussian to write SH gradients to
	glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs;

	// No tricks here, just high school-level calculus.
	float dRGBdsh0 = SH_C0;
	dL_dsh[0] = dRGBdsh0 * dL_dRGB;
	if (deg > 0)
	{
		float dRGBdsh1 = -SH_C1 * y;
		float dRGBdsh2 = SH_C1 * z;
		float dRGBdsh3 = -SH_C1 * x;
		dL_dsh[1] = dRGBdsh1 * dL_dRGB;
		dL_dsh[2] = dRGBdsh2 * dL_dRGB;
		dL_dsh[3] = dRGBdsh3 * dL_dRGB;

		dRGBdx = -SH_C1 * sh[3];
		dRGBdy = -SH_C1 * sh[1];
		dRGBdz = SH_C1 * sh[2];

		if (deg > 1)
		{
			float xx = x * x, yy = y * y, zz = z * z;
			float xy = x * y, yz = y * z, xz = x * z;

			float dRGBdsh4 = SH_C2[0] * xy;
			float dRGBdsh5 = SH_C2[1] * yz;
			float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy);
			float dRGBdsh7 = SH_C2[3] * xz;
			float dRGBdsh8 = SH_C2[4] * (xx - yy);
			dL_dsh[4] = dRGBdsh4 * dL_dRGB;
			dL_dsh[5] = dRGBdsh5 * dL_dRGB;
			dL_dsh[6] = dRGBdsh6 * dL_dRGB;
			dL_dsh[7] = dRGBdsh7 * dL_dRGB;
			dL_dsh[8] = dRGBdsh8 * dL_dRGB;

			dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8];
			dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8];
			dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7];

			if (deg > 2)
			{
				float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy);
				float dRGBdsh10 = SH_C3[1] * xy * z;
				float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy);
				float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy);
				float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy);
				float dRGBdsh14 = SH_C3[5] * z * (xx - yy);
				float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy);
				dL_dsh[9] = dRGBdsh9 * dL_dRGB;
				dL_dsh[10] = dRGBdsh10 * dL_dRGB;
				dL_dsh[11] = dRGBdsh11 * dL_dRGB;
				dL_dsh[12] = dRGBdsh12 * dL_dRGB;
				dL_dsh[13] = dRGBdsh13 * dL_dRGB;
				dL_dsh[14] = dRGBdsh14 * dL_dRGB;
				dL_dsh[15] = dRGBdsh15 * dL_dRGB;

				dRGBdx += (
					SH_C3[0] * sh[9] * 3.f * 2.f * xy +
					SH_C3[1] * sh[10] * yz +
					SH_C3[2] * sh[11] * -2.f * xy +
					SH_C3[3] * sh[12] * -3.f * 2.f * xz +
					SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) +
					SH_C3[5] * sh[14] * 2.f * xz +
					SH_C3[6] * sh[15] * 3.f * (xx - yy));

				dRGBdy += (
					SH_C3[0] * sh[9] * 3.f * (xx - yy) +
					SH_C3[1] * sh[10] * xz +
					SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) +
					SH_C3[3] * sh[12] * -3.f * 2.f * yz +
					SH_C3[4] * sh[13] * -2.f * xy +
					SH_C3[5] * sh[14] * -2.f * yz +
					SH_C3[6] * sh[15] * -3.f * 2.f * xy);

				dRGBdz += (
					SH_C3[1] * sh[10] * xy +
					SH_C3[2] * sh[11] * 4.f * 2.f * yz +
					SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) +
					SH_C3[4] * sh[13] * 4.f * 2.f * xz +
					SH_C3[5] * sh[14] * (xx - yy));
			}
		}
	}

	// The view direction is an input to the computation. View direction
	// is influenced by the Gaussian's mean, so SHs gradients
	// must propagate back into 3D position.
	glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB));

	// Account for normalization of direction
	float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z });

	// Gradients of loss w.r.t. Gaussian means, but only the portion 
	// that is caused because the mean affects the view-dependent color.
	// Additional mean gradient is accumulated in below methods.
	dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z);
}

// Backward version of INVERSE 2D covariance matrix computation
// (due to length launched as separate kernel before other 
// backward steps contained in preprocess)
__global__ void computeCov2DCUDA(int P,
	const float3* means,
	const int* radii,
	const float* cov3Ds,
	const float h_x, float h_y,
	const float tan_fovx, float tan_fovy,
	const float* view_matrix,
	const float* dL_dconics,
	float3* dL_dmeans,
	float* dL_dcov)
{
	auto idx = cg::this_grid().thread_rank();
	if (idx >= P || !(radii[idx] > 0))
		return;

	// Reading location of 3D covariance for this Gaussian
	const float* cov3D = cov3Ds + 6 * idx;

	// Fetch gradients, recompute 2D covariance and relevant 
	// intermediate forward results needed in the backward.
	float3 mean = means[idx];
	float3 dL_dconic = { dL_dconics[4 * idx], dL_dconics[4 * idx + 1], dL_dconics[4 * idx + 3] };
	float3 t = transformPoint4x3(mean, view_matrix);
	
	const float limx = 1.3f * tan_fovx;
	const float limy = 1.3f * tan_fovy;
	const float txtz = t.x / t.z;
	const float tytz = t.y / t.z;
	t.x = min(limx, max(-limx, txtz)) * t.z;
	t.y = min(limy, max(-limy, tytz)) * t.z;
	
	const float x_grad_mul = txtz < -limx || txtz > limx ? 0 : 1;
	const float y_grad_mul = tytz < -limy || tytz > limy ? 0 : 1;

	glm::mat3 J = glm::mat3(h_x / t.z, 0.0f, -(h_x * t.x) / (t.z * t.z),
		0.0f, h_y / t.z, -(h_y * t.y) / (t.z * t.z),
		0, 0, 0);

	glm::mat3 W = glm::mat3(
		view_matrix[0], view_matrix[4], view_matrix[8],
		view_matrix[1], view_matrix[5], view_matrix[9],
		view_matrix[2], view_matrix[6], view_matrix[10]);

	glm::mat3 Vrk = glm::mat3(
		cov3D[0], cov3D[1], cov3D[2],
		cov3D[1], cov3D[3], cov3D[4],
		cov3D[2], cov3D[4], cov3D[5]);

	glm::mat3 T = W * J;

	glm::mat3 cov2D = glm::transpose(T) * glm::transpose(Vrk) * T;

	// Use helper variables for 2D covariance entries. More compact.
	float a = cov2D[0][0] += 0.3f;
	float b = cov2D[0][1];
	float c = cov2D[1][1] += 0.3f;

	float denom = a * c - b * b;
	float dL_da = 0, dL_db = 0, dL_dc = 0;
	float denom2inv = 1.0f / ((denom * denom) + 0.0000001f);

	if (denom2inv != 0)
	{
		// Gradients of loss w.r.t. entries of 2D covariance matrix,
		// given gradients of loss w.r.t. conic matrix (inverse covariance matrix).
		// e.g., dL / da = dL / d_conic_a * d_conic_a / d_a
		dL_da = denom2inv * (-c * c * dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a * c) * dL_dconic.z);
		dL_dc = denom2inv * (-a * a * dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a * c) * dL_dconic.x);
		dL_db = denom2inv * 2 * (b * c * dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a * b * dL_dconic.z);

		// Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry, 
		// given gradients w.r.t. 2D covariance matrix (diagonal).
		// cov2D = transpose(T) * transpose(Vrk) * T;
		dL_dcov[6 * idx + 0] = (T[0][0] * T[0][0] * dL_da + T[0][0] * T[1][0] * dL_db + T[1][0] * T[1][0] * dL_dc);
		dL_dcov[6 * idx + 3] = (T[0][1] * T[0][1] * dL_da + T[0][1] * T[1][1] * dL_db + T[1][1] * T[1][1] * dL_dc);
		dL_dcov[6 * idx + 5] = (T[0][2] * T[0][2] * dL_da + T[0][2] * T[1][2] * dL_db + T[1][2] * T[1][2] * dL_dc);

		// Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry, 
		// given gradients w.r.t. 2D covariance matrix (off-diagonal).
		// Off-diagonal elements appear twice --> double the gradient.
		// cov2D = transpose(T) * transpose(Vrk) * T;
		dL_dcov[6 * idx + 1] = 2 * T[0][0] * T[0][1] * dL_da + (T[0][0] * T[1][1] + T[0][1] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][1] * dL_dc;
		dL_dcov[6 * idx + 2] = 2 * T[0][0] * T[0][2] * dL_da + (T[0][0] * T[1][2] + T[0][2] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][2] * dL_dc;
		dL_dcov[6 * idx + 4] = 2 * T[0][2] * T[0][1] * dL_da + (T[0][1] * T[1][2] + T[0][2] * T[1][1]) * dL_db + 2 * T[1][1] * T[1][2] * dL_dc;
	}
	else
	{
		for (int i = 0; i < 6; i++)
			dL_dcov[6 * idx + i] = 0;
	}

	// Gradients of loss w.r.t. upper 2x3 portion of intermediate matrix T
	// cov2D = transpose(T) * transpose(Vrk) * T;
	float dL_dT00 = 2 * (T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_da +
		(T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_db;
	float dL_dT01 = 2 * (T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_da +
		(T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_db;
	float dL_dT02 = 2 * (T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_da +
		(T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_db;
	float dL_dT10 = 2 * (T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_dc +
		(T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_db;
	float dL_dT11 = 2 * (T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_dc +
		(T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_db;
	float dL_dT12 = 2 * (T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_dc +
		(T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_db;

	// Gradients of loss w.r.t. upper 3x2 non-zero entries of Jacobian matrix
	// T = W * J
	float dL_dJ00 = W[0][0] * dL_dT00 + W[0][1] * dL_dT01 + W[0][2] * dL_dT02;
	float dL_dJ02 = W[2][0] * dL_dT00 + W[2][1] * dL_dT01 + W[2][2] * dL_dT02;
	float dL_dJ11 = W[1][0] * dL_dT10 + W[1][1] * dL_dT11 + W[1][2] * dL_dT12;
	float dL_dJ12 = W[2][0] * dL_dT10 + W[2][1] * dL_dT11 + W[2][2] * dL_dT12;

	float tz = 1.f / t.z;
	float tz2 = tz * tz;
	float tz3 = tz2 * tz;

	// Gradients of loss w.r.t. transformed Gaussian mean t
	float dL_dtx = x_grad_mul * -h_x * tz2 * dL_dJ02;
	float dL_dty = y_grad_mul * -h_y * tz2 * dL_dJ12;
	float dL_dtz = -h_x * tz2 * dL_dJ00 - h_y * tz2 * dL_dJ11 + (2 * h_x * t.x) * tz3 * dL_dJ02 + (2 * h_y * t.y) * tz3 * dL_dJ12;

	// Account for transformation of mean to t
	// t = transformPoint4x3(mean, view_matrix);
	float3 dL_dmean = transformVec4x3Transpose({ dL_dtx, dL_dty, dL_dtz }, view_matrix);

	// Gradients of loss w.r.t. Gaussian means, but only the portion 
	// that is caused because the mean affects the covariance matrix.
	// Additional mean gradient is accumulated in BACKWARD::preprocess.
	dL_dmeans[idx] = dL_dmean;
}

// Backward pass for the conversion of scale and rotation to a 
// 3D covariance matrix for each Gaussian. 
__device__ void computeCov3D(int idx, const glm::vec3 scale, float mod, const glm::vec4 rot, const float* dL_dcov3Ds, glm::vec3* dL_dscales, glm::vec4* dL_drots)
{
	// Recompute (intermediate) results for the 3D covariance computation.
	glm::vec4 q = rot;// / glm::length(rot);
	float r = q.x;
	float x = q.y;
	float y = q.z;
	float z = q.w;

	glm::mat3 R = glm::mat3(
		1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y),
		2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x),
		2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y)
	);

	glm::mat3 S = glm::mat3(1.0f);

	glm::vec3 s = mod * scale;
	S[0][0] = s.x;
	S[1][1] = s.y;
	S[2][2] = s.z;

	glm::mat3 M = S * R;

	const float* dL_dcov3D = dL_dcov3Ds + 6 * idx;

	glm::vec3 dunc(dL_dcov3D[0], dL_dcov3D[3], dL_dcov3D[5]);
	glm::vec3 ounc = 0.5f * glm::vec3(dL_dcov3D[1], dL_dcov3D[2], dL_dcov3D[4]);

	// Convert per-element covariance loss gradients to matrix form
	glm::mat3 dL_dSigma = glm::mat3(
		dL_dcov3D[0], 0.5f * dL_dcov3D[1], 0.5f * dL_dcov3D[2],
		0.5f * dL_dcov3D[1], dL_dcov3D[3], 0.5f * dL_dcov3D[4],
		0.5f * dL_dcov3D[2], 0.5f * dL_dcov3D[4], dL_dcov3D[5]
	);

	// Compute loss gradient w.r.t. matrix M
	// dSigma_dM = 2 * M
	glm::mat3 dL_dM = 2.0f * M * dL_dSigma;

	glm::mat3 Rt = glm::transpose(R);
	glm::mat3 dL_dMt = glm::transpose(dL_dM);

	// Gradients of loss w.r.t. scale
	glm::vec3* dL_dscale = dL_dscales + idx;
	dL_dscale->x = glm::dot(Rt[0], dL_dMt[0]);
	dL_dscale->y = glm::dot(Rt[1], dL_dMt[1]);
	dL_dscale->z = glm::dot(Rt[2], dL_dMt[2]);

	dL_dMt[0] *= s.x;
	dL_dMt[1] *= s.y;
	dL_dMt[2] *= s.z;

	// Gradients of loss w.r.t. normalized quaternion
	glm::vec4 dL_dq;
	dL_dq.x = 2 * z * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * y * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * x * (dL_dMt[1][2] - dL_dMt[2][1]);
	dL_dq.y = 2 * y * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * z * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * r * (dL_dMt[1][2] - dL_dMt[2][1]) - 4 * x * (dL_dMt[2][2] + dL_dMt[1][1]);
	dL_dq.z = 2 * x * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * r * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * z * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * y * (dL_dMt[2][2] + dL_dMt[0][0]);
	dL_dq.w = 2 * r * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * x * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * y * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * z * (dL_dMt[1][1] + dL_dMt[0][0]);

	// Gradients of loss w.r.t. unnormalized quaternion
	float4* dL_drot = (float4*)(dL_drots + idx);
	*dL_drot = float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w };//dnormvdv(float4{ rot.x, rot.y, rot.z, rot.w }, float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w });
}

// Backward pass of the preprocessing steps, except
// for the covariance computation and inversion
// (those are handled by a previous kernel call)
template<int C>
__global__ void preprocessCUDA(
	int P, int D, int M,
	const float3* means,
	const int* radii,
	const float* shs,
	const bool* clamped,
	const glm::vec3* scales,
	const glm::vec4* rotations,
	const float scale_modifier,
	const float* proj,
	const glm::vec3* campos,
	const float3* dL_dmean2D,
	glm::vec3* dL_dmeans,
	float* dL_dcolor,
	float* dL_dcov3D,
	float* dL_dsh,
	glm::vec3* dL_dscale,
	glm::vec4* dL_drot)
{
	auto idx = cg::this_grid().thread_rank();
	if (idx >= P || !(radii[idx] > 0))
		return;

	float3 m = means[idx];

	// Taking care of gradients from the screenspace points
	float4 m_hom = transformPoint4x4(m, proj);
	float m_w = 1.0f / (m_hom.w + 0.0000001f);

	// Compute loss gradient w.r.t. 3D means due to gradients of 2D means
	// from rendering procedure
	glm::vec3 dL_dmean;
	float mul1 = (proj[0] * m.x + proj[4] * m.y + proj[8] * m.z + proj[12]) * m_w * m_w;
	float mul2 = (proj[1] * m.x + proj[5] * m.y + proj[9] * m.z + proj[13]) * m_w * m_w;
	dL_dmean.x = (proj[0] * m_w - proj[3] * mul1) * dL_dmean2D[idx].x + (proj[1] * m_w - proj[3] * mul2) * dL_dmean2D[idx].y;
	dL_dmean.y = (proj[4] * m_w - proj[7] * mul1) * dL_dmean2D[idx].x + (proj[5] * m_w - proj[7] * mul2) * dL_dmean2D[idx].y;
	dL_dmean.z = (proj[8] * m_w - proj[11] * mul1) * dL_dmean2D[idx].x + (proj[9] * m_w - proj[11] * mul2) * dL_dmean2D[idx].y;

	// That's the second part of the mean gradient. Previous computation
	// of cov2D and following SH conversion also affects it.
	dL_dmeans[idx] += dL_dmean;

	// Compute gradient updates due to computing colors from SHs
	if (shs)
		computeColorFromSH(idx, D, M, (glm::vec3*)means, *campos, shs, clamped, (glm::vec3*)dL_dcolor, (glm::vec3*)dL_dmeans, (glm::vec3*)dL_dsh);

	// Compute gradient updates due to computing covariance from scale/rotation
	if (scales)
		computeCov3D(idx, scales[idx], scale_modifier, rotations[idx], dL_dcov3D, dL_dscale, dL_drot);
}

// Backward version of the rendering procedure.
template <uint32_t C>
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
renderCUDA(
	const uint2* __restrict__ ranges,
	const uint32_t* __restrict__ point_list,
	int W, int H,
	const float* __restrict__ bg_color,
	const float2* __restrict__ points_xy_image,
	const float4* __restrict__ conic_opacity,
	const float3* __restrict__ points_xyz,
	const float* __restrict__ colors,
	const float* __restrict__ depths,
	const float* __restrict__ projmatrix,
	const float* __restrict__ final_Ts,
	const uint32_t* __restrict__ n_contrib,
	const float* __restrict__ dL_dpixels,
	const float* __restrict__ dL_depths,
	float3* __restrict__ dL_dmean2D,
	float4* __restrict__ dL_dconic2D,
	float3* __restrict__ dL_dmean3D,
	float* __restrict__ dL_dopacity,
	float* __restrict__ dL_dcolors)
{
	// We rasterize again. Compute necessary block info.
	auto block = cg::this_thread_block();
	const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
	const uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
	const uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
	const uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
	const uint32_t pix_id = W * pix.y + pix.x;
	const float2 pixf = { (float)pix.x, (float)pix.y };

	const bool inside = pix.x < W&& pix.y < H;
	const uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];

	const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);

	bool done = !inside;
	int toDo = range.y - range.x;

	__shared__ int collected_id[BLOCK_SIZE];
	__shared__ float2 collected_xy[BLOCK_SIZE];
	__shared__ float4 collected_conic_opacity[BLOCK_SIZE];
	__shared__ float collected_colors[C * BLOCK_SIZE];
	__shared__ float collected_depths[BLOCK_SIZE];

	// In the forward, we stored the final value for T, the
	// product of all (1 - alpha) factors. 
	const float T_final = inside ? final_Ts[pix_id] : 0;
	float T = T_final;

	// We start from the back. The ID of the last contributing
	// Gaussian is known from each pixel from the forward.
	uint32_t contributor = toDo;
	const int last_contributor = inside ? n_contrib[pix_id] : 0;

	float accum_rec[C] = { 0 };
	float dL_dpixel[C];
	float dL_depth;
	float accum_depth_rec = 0;
	if (inside)
	{
		for (int i = 0; i < C; i++)
			dL_dpixel[i] = dL_dpixels[i * H * W + pix_id];
	        dL_depth = dL_depths[pix_id];
	}

	float last_alpha = 0;
	float last_color[C] = { 0 };
	float last_depth = 0;

	// Gradient of pixel coordinate w.r.t. normalized 
	// screen-space viewport corrdinates (-1 to 1)
	const float ddelx_dx = 0.5 * W;
	const float ddely_dy = 0.5 * H;

	// Traverse all Gaussians
	for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
	{
		// Load auxiliary data into shared memory, start in the BACK
		// and load them in revers order.
		block.sync();
		const int progress = i * BLOCK_SIZE + block.thread_rank();
		if (range.x + progress < range.y)
		{
			const int coll_id = point_list[range.y - progress - 1];
			collected_id[block.thread_rank()] = coll_id;
			collected_xy[block.thread_rank()] = points_xy_image[coll_id];
			collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id];
			for (int i = 0; i < C; i++)
				collected_colors[i * BLOCK_SIZE + block.thread_rank()] = colors[coll_id * C + i];
		        collected_depths[block.thread_rank()] = depths[coll_id];
		}
		block.sync();

		// Iterate over Gaussians
		for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
		{
			// Keep track of current Gaussian ID. Skip, if this one
			// is behind the last contributor for this pixel.
			contributor--;
			if (contributor >= last_contributor)
				continue;

			// Compute blending values, as before.
			const float2 xy = collected_xy[j];
			const float2 d = { xy.x - pixf.x, xy.y - pixf.y };
			const float4 con_o = collected_conic_opacity[j];
			const float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y;
			if (power > 0.0f)
				continue;

			const float G = exp(power);
			const float alpha = min(0.99f, con_o.w * G);
			if (alpha < 1.0f / 255.0f)
				continue;

			T = T / (1.f - alpha);
			const float dchannel_dcolor = alpha * T;

			// Propagate gradients to per-Gaussian colors and keep
			// gradients w.r.t. alpha (blending factor for a Gaussian/pixel
			// pair).
			float dL_dalpha = 0.0f;
			const int global_id = collected_id[j];
			for (int ch = 0; ch < C; ch++)
			{
				const float c = collected_colors[ch * BLOCK_SIZE + j];
				// Update last color (to be used in the next iteration)
				accum_rec[ch] = last_alpha * last_color[ch] + (1.f - last_alpha) * accum_rec[ch];
				last_color[ch] = c;

				const float dL_dchannel = dL_dpixel[ch];
				dL_dalpha += (c - accum_rec[ch]) * dL_dchannel;
				// Update the gradients w.r.t. color of the Gaussian. 
				// Atomic, since this pixel is just one of potentially
				// many that were affected by this Gaussian.
				atomicAdd(&(dL_dcolors[global_id * C + ch]), dchannel_dcolor * dL_dchannel);
			}
			const float c_d = collected_depths[j];
			accum_depth_rec = last_alpha * last_depth + (1.f - last_alpha) * accum_depth_rec;
			last_depth = c_d;
			dL_dalpha += (c_d - accum_depth_rec) * dL_depth;
			dL_dalpha *= T;

			// Update the gradients w.r.t. depth (=z in camera coord.) of the Gaussian.
			float3 m = points_xyz[global_id];
			float4 m_hom = transformPoint4x4(m, projmatrix);
			float m_w = 1.0f / (m_hom.w + 0.0000001f);
			float mul3 = (projmatrix[2] * m.x + projmatrix[6] * m.y + projmatrix[10] * m.z + projmatrix[14]) * m_w * m_w;
			// Update gradients w.r.t. 2D mean position of the Gaussian
			const float dL_camz = dchannel_dcolor * dL_depth;
			atomicAdd(&dL_dmean3D[global_id].x, (projmatrix[2] * m_w - projmatrix[3] * mul3) * dL_camz);
			atomicAdd(&dL_dmean3D[global_id].y, (projmatrix[6] * m_w - projmatrix[7] * mul3) * dL_camz);
			atomicAdd(&dL_dmean3D[global_id].z, (projmatrix[10] * m_w - projmatrix[11] * mul3) * dL_camz);
			// Update last alpha (to be used in the next iteration)
			last_alpha = alpha;

			// Account for fact that alpha also influences how much of
			// the background color is added if nothing left to blend
			float bg_dot_dpixel = 0;
			for (int i = 0; i < C; i++)
				bg_dot_dpixel += bg_color[i] * dL_dpixel[i];
			dL_dalpha += (-T_final / (1.f - alpha)) * bg_dot_dpixel;


			// Helpful reusable temporary variables
			const float dL_dG = con_o.w * dL_dalpha;
			const float gdx = G * d.x;
			const float gdy = G * d.y;
			const float dG_ddelx = -gdx * con_o.x - gdy * con_o.y;
			const float dG_ddely = -gdy * con_o.z - gdx * con_o.y;

			// Update gradients w.r.t. 2D mean position of the Gaussian
			atomicAdd(&dL_dmean2D[global_id].x, dL_dG * dG_ddelx * ddelx_dx);
			atomicAdd(&dL_dmean2D[global_id].y, dL_dG * dG_ddely * ddely_dy);

			// Update gradients w.r.t. 2D covariance (2x2 matrix, symmetric)
			atomicAdd(&dL_dconic2D[global_id].x, -0.5f * gdx * d.x * dL_dG);
			atomicAdd(&dL_dconic2D[global_id].y, -0.5f * gdx * d.y * dL_dG);
			atomicAdd(&dL_dconic2D[global_id].w, -0.5f * gdy * d.y * dL_dG);

			// Update gradients w.r.t. opacity of the Gaussian
			atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha);
		}
	}
}

void BACKWARD::preprocess(
	int P, int D, int M,
	const float3* means3D,
	const int* radii,
	const float* shs,
	const bool* clamped,
	const glm::vec3* scales,
	const glm::vec4* rotations,
	const float scale_modifier,
	const float* cov3Ds,
	const float* viewmatrix,
	const float* projmatrix,
	const float focal_x, float focal_y,
	const float tan_fovx, float tan_fovy,
	const glm::vec3* campos,
	const float3* dL_dmean2D,
	const float* dL_dconic,
	glm::vec3* dL_dmean3D,
	float* dL_dcolor,
	float* dL_dcov3D,
	float* dL_dsh,
	glm::vec3* dL_dscale,
	glm::vec4* dL_drot)
{
	// Propagate gradients for the path of 2D conic matrix computation. 
	// Somewhat long, thus it is its own kernel rather than being part of 
	// "preprocess". When done, loss gradient w.r.t. 3D means has been
	// modified and gradient w.r.t. 3D covariance matrix has been computed.	
	computeCov2DCUDA << <(P + 255) / 256, 256 >> > (
		P,
		means3D,
		radii,
		cov3Ds,
		focal_x,
		focal_y,
		tan_fovx,
		tan_fovy,
		viewmatrix,
		dL_dconic,
		(float3*)dL_dmean3D,
		dL_dcov3D);

	// Propagate gradients for remaining steps: finish 3D mean gradients,
	// propagate color gradients to SH (if desireD), propagate 3D covariance
	// matrix gradients to scale and rotation.
	preprocessCUDA<NUM_CHANNELS> << < (P + 255) / 256, 256 >> > (
		P, D, M,
		(float3*)means3D,
		radii,
		shs,
		clamped,
		(glm::vec3*)scales,
		(glm::vec4*)rotations,
		scale_modifier,
		projmatrix,
		campos,
		(float3*)dL_dmean2D,
		(glm::vec3*)dL_dmean3D,
		dL_dcolor,
		dL_dcov3D,
		dL_dsh,
		dL_dscale,
		dL_drot);
}

void BACKWARD::render(
	const dim3 grid, const dim3 block,
	const uint2* ranges,
	const uint32_t* point_list,
	int W, int H,
	const float* bg_color,
	const float2* means2D,
	const float4* conic_opacity,
	const float3* means3D,
	const float* colors,
	const float* depths,
	const float* projmatrix,
	const float* final_Ts,
	const uint32_t* n_contrib,
	const float* dL_dpixels,
	const float* dL_depths,
	float3* dL_dmean2D,
	float4* dL_dconic2D,
	float3* dL_dmean3D,
	float* dL_dopacity,
	float* dL_dcolors)
{
	renderCUDA<NUM_CHANNELS> << <grid, block >> >(
		ranges,
		point_list,
		W, H,
		bg_color,
		means2D,
		conic_opacity,
		means3D,
		colors,
		depths,
		projmatrix,
		final_Ts,
		n_contrib,
		dL_dpixels,
		dL_depths,
		dL_dmean2D,
		dL_dconic2D,
		dL_dmean3D,
		dL_dopacity,
		dL_dcolors
		);
}