Spaces:
Runtime error
Runtime error
File size: 5,174 Bytes
24f9881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import glob
import os
import h5py
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
def hypersim_distance_to_depth(npyDistance):
intWidth, intHeight, fltFocal = 1024, 768, 886.81
npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape(
1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None]
npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5,
intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None]
npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32)
npyImageplane = np.concatenate(
[npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2)
npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal
return npyDepth
class ToTensor(object):
def __init__(self):
# self.normalize = transforms.Normalize(
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.normalize = lambda x: x
self.resize = transforms.Resize((480, 640))
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
image = self.to_tensor(image)
image = self.normalize(image)
depth = self.to_tensor(depth)
image = self.resize(image)
return {'image': image, 'depth': depth, 'dataset': "hypersim"}
def to_tensor(self, pic):
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1)))
return img
# # handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(
torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float()
else:
return img
class HyperSim(Dataset):
def __init__(self, data_dir_root):
# image paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.tonemap.jpg
# depth paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.depth_meters.hdf5
self.image_files = glob.glob(os.path.join(
data_dir_root, '*', 'images', 'scene_cam_*_final_preview', '*.tonemap.jpg'))
self.depth_files = [r.replace("_final_preview", "_geometry_hdf5").replace(
".tonemap.jpg", ".depth_meters.hdf5") for r in self.image_files]
self.transform = ToTensor()
def __getitem__(self, idx):
image_path = self.image_files[idx]
depth_path = self.depth_files[idx]
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
# depth from hdf5
depth_fd = h5py.File(depth_path, "r")
# in meters (Euclidean distance)
distance_meters = np.array(depth_fd['dataset'])
depth = hypersim_distance_to_depth(
distance_meters) # in meters (planar depth)
# depth[depth > 8] = -1
depth = depth[..., None]
sample = dict(image=image, depth=depth)
sample = self.transform(sample)
if idx == 0:
print(sample["image"].shape)
return sample
def __len__(self):
return len(self.image_files)
def get_hypersim_loader(data_dir_root, batch_size=1, **kwargs):
dataset = HyperSim(data_dir_root)
return DataLoader(dataset, batch_size, **kwargs)
|