File size: 15,290 Bytes
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import math
import random

import cv2
import numpy as np


class RandomFliplr(object):
    """Horizontal flip of the sample with given probability.
    """

    def __init__(self, probability=0.5):
        """Init.

        Args:
            probability (float, optional): Flip probability. Defaults to 0.5.
        """
        self.__probability = probability

    def __call__(self, sample):
        prob = random.random()

        if prob < self.__probability:
            for k, v in sample.items():
                if len(v.shape) >= 2:
                    sample[k] = np.fliplr(v).copy()

        return sample


def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
    """Rezise the sample to ensure the given size. Keeps aspect ratio.

    Args:
        sample (dict): sample
        size (tuple): image size

    Returns:
        tuple: new size
    """
    shape = list(sample["disparity"].shape)

    if shape[0] >= size[0] and shape[1] >= size[1]:
        return sample

    scale = [0, 0]
    scale[0] = size[0] / shape[0]
    scale[1] = size[1] / shape[1]

    scale = max(scale)

    shape[0] = math.ceil(scale * shape[0])
    shape[1] = math.ceil(scale * shape[1])

    # resize
    sample["image"] = cv2.resize(
        sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
    )

    sample["disparity"] = cv2.resize(
        sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
    )
    sample["mask"] = cv2.resize(
        sample["mask"].astype(np.float32),
        tuple(shape[::-1]),
        interpolation=cv2.INTER_NEAREST,
    )
    sample["mask"] = sample["mask"].astype(bool)

    return tuple(shape)


class RandomCrop(object):
    """Get a random crop of the sample with the given size (width, height).
    """

    def __init__(
        self,
        width,
        height,
        resize_if_needed=False,
        image_interpolation_method=cv2.INTER_AREA,
    ):
        """Init.

        Args:
            width (int): output width
            height (int): output height
            resize_if_needed (bool, optional): If True, sample might be upsampled to ensure
                that a crop of size (width, height) is possbile. Defaults to False.
        """
        self.__size = (height, width)
        self.__resize_if_needed = resize_if_needed
        self.__image_interpolation_method = image_interpolation_method

    def __call__(self, sample):

        shape = sample["disparity"].shape

        if self.__size[0] > shape[0] or self.__size[1] > shape[1]:
            if self.__resize_if_needed:
                shape = apply_min_size(
                    sample, self.__size, self.__image_interpolation_method
                )
            else:
                raise Exception(
                    "Output size {} bigger than input size {}.".format(
                        self.__size, shape
                    )
                )

        offset = (
            np.random.randint(shape[0] - self.__size[0] + 1),
            np.random.randint(shape[1] - self.__size[1] + 1),
        )

        for k, v in sample.items():
            if k == "code" or k == "basis":
                continue

            if len(sample[k].shape) >= 2:
                sample[k] = v[
                    offset[0]: offset[0] + self.__size[0],
                    offset[1]: offset[1] + self.__size[1],
                ]

        return sample


class Resize(object):
    """Resize sample to given size (width, height).
    """

    def __init__(
        self,
        width,
        height,
        resize_target=True,
        keep_aspect_ratio=False,
        ensure_multiple_of=1,
        resize_method="lower_bound",
        image_interpolation_method=cv2.INTER_AREA,
        letter_box=False,
    ):
        """Init.

        Args:
            width (int): desired output width
            height (int): desired output height
            resize_target (bool, optional):
                True: Resize the full sample (image, mask, target).
                False: Resize image only.
                Defaults to True.
            keep_aspect_ratio (bool, optional):
                True: Keep the aspect ratio of the input sample.
                Output sample might not have the given width and height, and
                resize behaviour depends on the parameter 'resize_method'.
                Defaults to False.
            ensure_multiple_of (int, optional):
                Output width and height is constrained to be multiple of this parameter.
                Defaults to 1.
            resize_method (str, optional):
                "lower_bound": Output will be at least as large as the given size.
                "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
                "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
                Defaults to "lower_bound".
        """
        self.__width = width
        self.__height = height

        self.__resize_target = resize_target
        self.__keep_aspect_ratio = keep_aspect_ratio
        self.__multiple_of = ensure_multiple_of
        self.__resize_method = resize_method
        self.__image_interpolation_method = image_interpolation_method
        self.__letter_box = letter_box

    def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
        y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)

        if max_val is not None and y > max_val:
            y = (np.floor(x / self.__multiple_of)
                 * self.__multiple_of).astype(int)

        if y < min_val:
            y = (np.ceil(x / self.__multiple_of)
                 * self.__multiple_of).astype(int)

        return y

    def get_size(self, width, height):
        # determine new height and width
        scale_height = self.__height / height
        scale_width = self.__width / width

        if self.__keep_aspect_ratio:
            if self.__resize_method == "lower_bound":
                # scale such that output size is lower bound
                if scale_width > scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "upper_bound":
                # scale such that output size is upper bound
                if scale_width < scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "minimal":
                # scale as least as possbile
                if abs(1 - scale_width) < abs(1 - scale_height):
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            else:
                raise ValueError(
                    f"resize_method {self.__resize_method} not implemented"
                )

        if self.__resize_method == "lower_bound":
            new_height = self.constrain_to_multiple_of(
                scale_height * height, min_val=self.__height
            )
            new_width = self.constrain_to_multiple_of(
                scale_width * width, min_val=self.__width
            )
        elif self.__resize_method == "upper_bound":
            new_height = self.constrain_to_multiple_of(
                scale_height * height, max_val=self.__height
            )
            new_width = self.constrain_to_multiple_of(
                scale_width * width, max_val=self.__width
            )
        elif self.__resize_method == "minimal":
            new_height = self.constrain_to_multiple_of(scale_height * height)
            new_width = self.constrain_to_multiple_of(scale_width * width)
        else:
            raise ValueError(
                f"resize_method {self.__resize_method} not implemented")

        return (new_width, new_height)

    def make_letter_box(self, sample):
        top = bottom = (self.__height - sample.shape[0]) // 2
        left = right = (self.__width - sample.shape[1]) // 2
        sample = cv2.copyMakeBorder(
            sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0)
        return sample

    def __call__(self, sample):
        width, height = self.get_size(
            sample["image"].shape[1], sample["image"].shape[0]
        )

        # resize sample
        sample["image"] = cv2.resize(
            sample["image"],
            (width, height),
            interpolation=self.__image_interpolation_method,
        )

        if self.__letter_box:
            sample["image"] = self.make_letter_box(sample["image"])

        if self.__resize_target:
            if "disparity" in sample:
                sample["disparity"] = cv2.resize(
                    sample["disparity"],
                    (width, height),
                    interpolation=cv2.INTER_NEAREST,
                )

                if self.__letter_box:
                    sample["disparity"] = self.make_letter_box(
                        sample["disparity"])

            if "depth" in sample:
                sample["depth"] = cv2.resize(
                    sample["depth"], (width,
                                      height), interpolation=cv2.INTER_NEAREST
                )

                if self.__letter_box:
                    sample["depth"] = self.make_letter_box(sample["depth"])

            sample["mask"] = cv2.resize(
                sample["mask"].astype(np.float32),
                (width, height),
                interpolation=cv2.INTER_NEAREST,
            )

            if self.__letter_box:
                sample["mask"] = self.make_letter_box(sample["mask"])

            sample["mask"] = sample["mask"].astype(bool)

        return sample


class ResizeFixed(object):
    def __init__(self, size):
        self.__size = size

    def __call__(self, sample):
        sample["image"] = cv2.resize(
            sample["image"], self.__size[::-1], interpolation=cv2.INTER_LINEAR
        )

        sample["disparity"] = cv2.resize(
            sample["disparity"], self.__size[::-
                                             1], interpolation=cv2.INTER_NEAREST
        )

        sample["mask"] = cv2.resize(
            sample["mask"].astype(np.float32),
            self.__size[::-1],
            interpolation=cv2.INTER_NEAREST,
        )
        sample["mask"] = sample["mask"].astype(bool)

        return sample


class Rescale(object):
    """Rescale target values to the interval [0, max_val].
    If input is constant, values are set to max_val / 2.
    """

    def __init__(self, max_val=1.0, use_mask=True):
        """Init.

        Args:
            max_val (float, optional): Max output value. Defaults to 1.0.
            use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True.
        """
        self.__max_val = max_val
        self.__use_mask = use_mask

    def __call__(self, sample):
        disp = sample["disparity"]

        if self.__use_mask:
            mask = sample["mask"]
        else:
            mask = np.ones_like(disp, dtype=np.bool)

        if np.sum(mask) == 0:
            return sample

        min_val = np.min(disp[mask])
        max_val = np.max(disp[mask])

        if max_val > min_val:
            sample["disparity"][mask] = (
                (disp[mask] - min_val) / (max_val - min_val) * self.__max_val
            )
        else:
            sample["disparity"][mask] = np.ones_like(
                disp[mask]) * self.__max_val / 2.0

        return sample


# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
class NormalizeImage(object):
    """Normlize image by given mean and std.
    """

    def __init__(self, mean, std):
        self.__mean = mean
        self.__std = std

    def __call__(self, sample):
        sample["image"] = (sample["image"] - self.__mean) / self.__std

        return sample


class DepthToDisparity(object):
    """Convert depth to disparity. Removes depth from sample.
    """

    def __init__(self, eps=1e-4):
        self.__eps = eps

    def __call__(self, sample):
        assert "depth" in sample

        sample["mask"][sample["depth"] < self.__eps] = False

        sample["disparity"] = np.zeros_like(sample["depth"])
        sample["disparity"][sample["depth"] >= self.__eps] = (
            1.0 / sample["depth"][sample["depth"] >= self.__eps]
        )

        del sample["depth"]

        return sample


class DisparityToDepth(object):
    """Convert disparity to depth. Removes disparity from sample.
    """

    def __init__(self, eps=1e-4):
        self.__eps = eps

    def __call__(self, sample):
        assert "disparity" in sample

        disp = np.abs(sample["disparity"])
        sample["mask"][disp < self.__eps] = False

        # print(sample["disparity"])
        # print(sample["mask"].sum())
        # exit()

        sample["depth"] = np.zeros_like(disp)
        sample["depth"][disp >= self.__eps] = (
            1.0 / disp[disp >= self.__eps]
        )

        del sample["disparity"]

        return sample


class PrepareForNet(object):
    """Prepare sample for usage as network input.
    """

    def __init__(self):
        pass

    def __call__(self, sample):
        image = np.transpose(sample["image"], (2, 0, 1))
        sample["image"] = np.ascontiguousarray(image).astype(np.float32)

        if "mask" in sample:
            sample["mask"] = sample["mask"].astype(np.float32)
            sample["mask"] = np.ascontiguousarray(sample["mask"])

        if "disparity" in sample:
            disparity = sample["disparity"].astype(np.float32)
            sample["disparity"] = np.ascontiguousarray(disparity)

        if "depth" in sample:
            depth = sample["depth"].astype(np.float32)
            sample["depth"] = np.ascontiguousarray(depth)

        return sample