File size: 7,317 Bytes
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import os

import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms


class ToTensor(object):
    def __init__(self):
        # self.normalize = transforms.Normalize(
        #     mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        self.normalize = lambda x: x
        # self.resize = transforms.Resize((375, 1242))

    def __call__(self, sample):
        image, depth = sample['image'], sample['depth']

        image = self.to_tensor(image)
        image = self.normalize(image)
        depth = self.to_tensor(depth)

        # image = self.resize(image)

        return {'image': image, 'depth': depth, 'dataset': "vkitti"}

    def to_tensor(self, pic):

        if isinstance(pic, np.ndarray):
            img = torch.from_numpy(pic.transpose((2, 0, 1)))
            return img

        #         # handle PIL Image
        if pic.mode == 'I':
            img = torch.from_numpy(np.array(pic, np.int32, copy=False))
        elif pic.mode == 'I;16':
            img = torch.from_numpy(np.array(pic, np.int16, copy=False))
        else:
            img = torch.ByteTensor(
                torch.ByteStorage.from_buffer(pic.tobytes()))
        # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
        if pic.mode == 'YCbCr':
            nchannel = 3
        elif pic.mode == 'I;16':
            nchannel = 1
        else:
            nchannel = len(pic.mode)
        img = img.view(pic.size[1], pic.size[0], nchannel)

        img = img.transpose(0, 1).transpose(0, 2).contiguous()
        if isinstance(img, torch.ByteTensor):
            return img.float()
        else:
            return img


class VKITTI2(Dataset):
    def __init__(self, data_dir_root, do_kb_crop=True, split="test"):
        import glob

        # image paths are of the form <data_dir_root>/rgb/<scene>/<variant>/frames/<rgb,depth>/Camera<0,1>/rgb_{}.jpg
        self.image_files = glob.glob(os.path.join(
            data_dir_root, "rgb", "**", "frames", "rgb", "Camera_0", '*.jpg'), recursive=True)
        self.depth_files = [r.replace("/rgb/", "/depth/").replace(
            "rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
        self.do_kb_crop = True
        self.transform = ToTensor()

        # If train test split is not created, then create one.
        # Split is such that 8% of the frames from each scene are used for testing.
        if not os.path.exists(os.path.join(data_dir_root, "train.txt")):
            import random
            scenes = set([os.path.basename(os.path.dirname(
                os.path.dirname(os.path.dirname(f)))) for f in self.image_files])
            train_files = []
            test_files = []
            for scene in scenes:
                scene_files = [f for f in self.image_files if os.path.basename(
                    os.path.dirname(os.path.dirname(os.path.dirname(f)))) == scene]
                random.shuffle(scene_files)
                train_files.extend(scene_files[:int(len(scene_files) * 0.92)])
                test_files.extend(scene_files[int(len(scene_files) * 0.92):])
            with open(os.path.join(data_dir_root, "train.txt"), "w") as f:
                f.write("\n".join(train_files))
            with open(os.path.join(data_dir_root, "test.txt"), "w") as f:
                f.write("\n".join(test_files))

        if split == "train":
            with open(os.path.join(data_dir_root, "train.txt"), "r") as f:
                self.image_files = f.read().splitlines()
            self.depth_files = [r.replace("/rgb/", "/depth/").replace(
                "rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
        elif split == "test":
            with open(os.path.join(data_dir_root, "test.txt"), "r") as f:
                self.image_files = f.read().splitlines()
            self.depth_files = [r.replace("/rgb/", "/depth/").replace(
                "rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]

    def __getitem__(self, idx):
        image_path = self.image_files[idx]
        depth_path = self.depth_files[idx]

        image = Image.open(image_path)
        # depth = Image.open(depth_path)
        depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR |
                           cv2.IMREAD_ANYDEPTH) / 100.0  # cm to m
        depth = Image.fromarray(depth)
        # print("dpeth min max", depth.min(), depth.max())

        # print(np.shape(image))
        # print(np.shape(depth))

        if self.do_kb_crop:
            if idx == 0:
                print("Using KB input crop")
            height = image.height
            width = image.width
            top_margin = int(height - 352)
            left_margin = int((width - 1216) / 2)
            depth = depth.crop(
                (left_margin, top_margin, left_margin + 1216, top_margin + 352))
            image = image.crop(
                (left_margin, top_margin, left_margin + 1216, top_margin + 352))
            # uv = uv[:, top_margin:top_margin + 352, left_margin:left_margin + 1216]

        image = np.asarray(image, dtype=np.float32) / 255.0
        # depth = np.asarray(depth, dtype=np.uint16) /1.
        depth = np.asarray(depth, dtype=np.float32) / 1.
        depth[depth > 80] = -1

        depth = depth[..., None]
        sample = dict(image=image, depth=depth)

        # return sample
        sample = self.transform(sample)

        if idx == 0:
            print(sample["image"].shape)

        return sample

    def __len__(self):
        return len(self.image_files)


def get_vkitti2_loader(data_dir_root, batch_size=1, **kwargs):
    dataset = VKITTI2(data_dir_root)
    return DataLoader(dataset, batch_size, **kwargs)


if __name__ == "__main__":
    loader = get_vkitti2_loader(
        data_dir_root="/home/bhatsf/shortcuts/datasets/vkitti2")
    print("Total files", len(loader.dataset))
    for i, sample in enumerate(loader):
        print(sample["image"].shape)
        print(sample["depth"].shape)
        print(sample["dataset"])
        print(sample['depth'].min(), sample['depth'].max())
        if i > 5:
            break