File size: 13,006 Bytes
24f9881
 
 
 
 
 
 
 
 
 
 
 
0dead1b
24f9881
0dead1b
1cf8b36
 
24f9881
0dead1b
24f9881
 
0dead1b
0644986
0dead1b
 
28c2f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1687cd
1cf8b36
 
 
 
 
 
 
259e927
 
1cf8b36
0dead1b
24f9881
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
 
 
259e927
 
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
259e927
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259e927
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (C) 2023, Computer Vision Lab, Seoul National University, https://cv.snu.ac.kr
#
# Copyright 2023 LucidDreamer Authors
#
# Computer Vision Lab, SNU, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from the Computer Vision Lab, SNU or
# its affiliates is strictly prohibited.
#
# For permission requests, please contact robot0321@snu.ac.kr, esw0116@snu.ac.kr, namhj28@gmail.com, jarin.lee@gmail.com.
import os
import time
import pathlib
import shlex
import subprocess
import gradio as gr
from huggingface_hub import snapshot_download


root = pathlib.Path(__file__).parent
example_root = os.path.join(root, 'examples')
ckpt_root = os.path.join(root, 'stablediffusion')

d = example_root
if not os.path.exists(d):
    snapshot_download(repo_id="ironjr/LucidDreamerDemo", repo_type="model", local_dir=d)
d = os.path.join(ckpt_root, 'Blazing Drive V11m')
if not os.path.exists(d):
    snapshot_download(repo_id="ironjr/BlazingDriveV11m", repo_type="model", local_dir=d)
d = os.path.join(ckpt_root, 'RealCartoon-Pixar V5')
if not os.path.exists(d):
    snapshot_download(repo_id="ironjr/RealCartoon-PixarV5", repo_type="model", local_dir=d)
d = os.path.join(ckpt_root, 'Realistic Vision V5.1')
if not os.path.exists(d):
    snapshot_download(repo_id="ironjr/RealisticVisionV5-1", repo_type="model", local_dir=d)
d = os.path.join(ckpt_root, 'SD1-5')
if not os.path.exists(d):
    snapshot_download(repo_id="runwayml/stable-diffusion-inpainting", repo_type="model", local_dir=d)

try:
    import simple_knn
except ModuleNotFoundError:
    subprocess.run(shlex.split('python setup.py install'), cwd=os.path.join(root, 'submodules', 'simple-knn'))
try:
    import depth_diff_gaussian_rasterization_min 
except ModuleNotFoundError:
    subprocess.run(shlex.split('python setup.py install'), cwd=os.path.join(root, 'submodules', 'depth-diff-gaussian-rasterization-min'))

from luciddreamer import LucidDreamer


css = """
#run-button {
  background: coral;
  color: white;
}
"""

ld = LucidDreamer()


with gr.Blocks(css=css) as demo:

    gr.HTML(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
        <div>
            <h1 >LucidDreamer: Domain-free Generation of 3D Gaussian Splatting Scenes</h1>
            <h5 style="margin: 0;">If you like our project, please visit our Github, too! ✨✨✨ More features are waiting!</h5>
            </br>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <a href='https://arxiv.org/abs/2311.13384'>
                    <img src="https://img.shields.io/badge/Arxiv-2311.13384-red">
                </a>
                &nbsp;
                <a href='https://luciddreamer-cvlab.github.io'>
                    <img src='https://img.shields.io/badge/Project-LucidDreamer-green' alt='Project Page'>
                </a>
                &nbsp;
                <a href='https://github.com/luciddreamer-cvlab/LucidDreamer'>
                    <img src='https://img.shields.io/github/stars/luciddreamer-cvlab/LucidDreamer?label=Github&color=blue'>
                </a>
                &nbsp;
                <a href='https://twitter.com/_ironjr_'>
                    <img src='https://img.shields.io/twitter/url?label=_ironjr_&url=https%3A%2F%2Ftwitter.com%2F_ironjr_'>
                </a>
            </div>
        </div>
        </div>
        """
    )

    with gr.Row():

        result_gallery = gr.Video(label='RGB Video', show_label=True)

        result_depth = gr.Video(label='Depth Video', show_label=True)

        result_ply_file = gr.File(label='Gaussian splatting PLY', show_label=True)


    with gr.Row():

        input_image = gr.Image(
            label='Image prompt',
            sources='upload',
            type='pil',
        )

        with gr.Column():
            model_name = gr.Radio(
                label='SD checkpoint',
                choices=['SD1.5 (default)', 'Blazing Drive V11m', 'Realistic Vision V5.1', 'RealCartoon-Pixar V5',],
                value='SD1.5 (default)'
            )
            
            prompt = gr.Textbox(
                label='Text prompt',
                value='A cozy livingroom',
            )
            n_prompt = gr.Textbox(
                label='Negative prompt',
                value='photo frame, frame, boarder, simple color, inconsistent, humans, people',
            )
            gen_camerapath = gr.Radio(
                label='Camera trajectory for generation (STEP 1)',
                choices=['lookaround', 'lookdown', 'rotate360'],
                value='lookaround',
            )
            
            with gr.Row():
                seed = gr.Slider(
                    label='Seed',
                    minimum=1,
                    maximum=2147483647,
                    step=1,
                    randomize=True,
                )
                diff_steps = gr.Slider(
                    label='SD inpainting steps',
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )

            render_camerapath = gr.Radio(
                label='Camera trajectory for rendering (STEP 2)',
                choices=['back_and_forth', 'llff', 'headbanging'],
                value='llff',
            )

        with gr.Column():
            run_button = gr.Button(value='Run! (it may take a while)', elem_id='run-button')

            gr.HTML(
                """
                <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <div>
                    <h3>...or you can run in two steps</h3>
                    <h5>(hint: press STEP 2 if you have already baked Gaussians in STEP 1).</h5>
                </div>
                </div>
                """
            )

            with gr.Row():
                gaussian_button = gr.Button(value='STEP 1: Generate Gaussians')
                render_button = gr.Button(value='STEP 2: Render A Video')

            gr.HTML(
                """
                <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <div>
                    <h5>...or you can just watch a quick preload we have baked already.</h5>
                </div>
                </div>
                """
            )

            example_name = gr.Radio(
                label='Quick load',
                choices=['girl', 'ruin', 'doge', 'christmas', 'elf', 'animelake', 'fantasy', 'kitchen', 'DON\'T'],
                value='DON\'T',
            )

    ips = [example_name, input_image, prompt, n_prompt, gen_camerapath, seed, diff_steps, render_camerapath, model_name]

    run_button.click(fn=ld.run, inputs=ips[1:] + ips[:1], outputs=[result_ply_file, result_gallery, result_depth])
    gaussian_button.click(fn=ld.create, inputs=ips[1:-1] + ips[:1], outputs=[result_ply_file])
    render_button.click(fn=ld.render_video, inputs=ips[-2:-1] + ips[:1], outputs=[result_gallery, result_depth])

    gr.Examples(
        examples=[
            [
                'girl',
                'examples/girl.jpg',
                'dark messy room, noir style, indoors, bottle, shoe soles, jacket, cup, window, blurry, black footwear, depth of field, box, couch, table, gun, chair, foreshortening',
                'photo frame, frame, boarder, simple color, inconsistent',
                'lookaround',
                10,
                25,
                'back_and_forth',
                'Blazing Drive V11m',
            ],
            [
                'ruin',
                'examples/ruin.png',
                'Postapocalyptic city in desert',
                'photo frame, frame, boarder, simple color, inconsistent, humans, people',
                'lookaround',
                4,
                25,
                'back_and_forth',
                'Blazing Drive V11m',
            ],
            [
                'doge',
                'examples/doge.png',
                'a cozy livingroom',
                'photo frame, frame, boarder, simple color, inconsistent, humans, people',
                'lookaround',
                10,
                25,
                'back_and_forth',
                'Realistic Vision V5.1',
            ],
            [
                'christmas',
                'examples/christmas.png',
                'Cozy livingroom in christmas',
                'photo frame, frame, boarder, simple color, inconsistent, humans, people',
                'lookaround',
                3,
                25,
                'back_and_forth',
                'Realistic Vision V5.1',
            ],
            [
                'elf',
                'examples/elf.png',
                'serene deep forest',
                'photo frame, frame, boarder, simple color, inconsistent, humans, people',
                'lookaround',
                10,
                25,
                'back_and_forth',
                'RealCartoon-Pixar V5',
            ],
            [
                'animelake',
                'examples/Image015_animelakehouse.jpg',
                'anime style, animation, best quality, a boat on lake, trees and rocks near the lake. a house and port in front of a house',
                'photo frame, frame, boarder, simple color, inconsistent',
                'lookdown',
                1,
                50,
                'back_and_forth',
                'SD1.5 (default)',
            ],
            [
                'fantasy',
                'examples/Image003_fantasy.jpg',
                'A vibrant, colorful floating community city, clouds above a beautiful, enchanted landscape filled with whimsical flora, enchanted forest landscape, Magical and dreamy woodland with vibrant green foliage and sparkling flowers, Landscape with twisted trees and vines, natural lighting and dark shadows, unique fantastical elements like floating islands and floating orbs, Highly detailed vegetation and foliage, deep contrast and color vibrancy,', # texture and intricate details in a floating element',
                'photo frame, frame, boarder, simple color, inconsistent',
                'lookaround',
                30,
                50,
                'back_and_forth',
                'SD1.5 (default)',
            ],
            [
                'kitchen',
                'examples/image020.png',
                'High-resolution photography kitchen design, wooden floor, small windows opening onto the garden, Bauhaus furniture and decoration, high ceiling, beige blue salmon pastel palette, interior design magazine, cozy atmosphere; 8k, intricate detail, photorealistic, realistic light, wide angle, kinfolk photography, A+D architecture, Kitchen Sink, Basket of fruits and vegetables, a bottle of ', #drinking water, walls painted magazine style photo, looking towards a sink under a window, with a door on the left of the sink with a 25 cm distance from the kitchen, the kitchen is an L shaped starting from the right corner, on the far right a fridge nest to it a stove, next the dishwasher then the sink, a smokey grey kitchen with modern touches, taupe walls, a taup ceiling with spotlights inside the ceiling with 90 cm distance, wooden parquet floor',
                'photo frame, frame, boarder, simple color, inconsistent',
                'rotate360',
                1,
                50,
                'headbanging',
                'SD1.5 (default)',
            ],
        ],
        inputs=ips,
        outputs=[result_ply_file, result_gallery, result_depth],
        fn=ld.run,
        cache_examples=False,
    )

    gr.HTML(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: left;">
        </br>
        <div>
            <h5 style="margin: 0;">Acknowledgement and Disclaimer</h5>
            </br>
            <p>We deeply thank <a href="https://twitter.com/br_d">br_d</a>, <a href="https://ko-fi.com/7whitefire7">7whitefire7</a>, and <a href="https://huggingface.co/SG161222">SG161222</a> for their awesome Stable Diffusion models. We also appreciate <a href="https://twitter.com/ai_pictures21">ai_pictures21</a> and <a href="https://twitter.com/recatm">recatm</a> for the beautiful illustrations used in the examples. Please note that the authors of this work do not own the model checkpoints and the illustrations in this demo. LucidDreamer algorithm cannot be used for commercial purpose. Please contact the authors for permission requests.</p>
        </div>
        </div>
        """
    )


if __name__ == '__main__':
    demo.queue(max_size=20).launch()