Spaces:
Sleeping
Sleeping
File size: 7,992 Bytes
c7e434a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
"""
Audio Processor - Main Orchestrator
Koordinasi semua analisis audio
"""
import time
from typing import Dict, Optional, List
from app.config import settings
from app.services.speech_to_text import SpeechToTextService
from app.services.tempo import TempoService
from app.services.articulation import ArticulationService, ProfanityDetector
from app.services.structure import StructureService
from app.services.keywords import KeywordService
class AudioProcessor:
"""Main orchestrator untuk audio analysis"""
def __init__(self):
"""Initialize all services"""
print("π Initializing Audio Processor...")
# Initialize services (lazy loading)
self._stt_service = None
self._tempo_service = None
self._articulation_service = None
self._structure_service = None
self._keyword_service = None
print("β
Audio Processor ready!\n")
@property
def stt_service(self):
"""Lazy load STT service"""
if self._stt_service is None:
self._stt_service = SpeechToTextService(
model_name=settings.WHISPER_MODEL,
device="auto", # Auto-detect GPU/CPU
language="id"
)
return self._stt_service
@property
def tempo_service(self):
"""Lazy load Tempo service"""
if self._tempo_service is None:
self._tempo_service = TempoService()
return self._tempo_service
@property
def articulation_service(self):
"""Lazy load Articulation service"""
if self._articulation_service is None:
self._articulation_service = ArticulationService()
return self._articulation_service
@property
def structure_service(self):
"""Lazy load Structure service"""
if self._structure_service is None:
# Uses default 'Cyberlace/swara-structure-model' from HF Hub
self._structure_service = StructureService()
return self._structure_service
@property
def keyword_service(self):
"""Lazy load Keyword service"""
if self._keyword_service is None:
self._keyword_service = KeywordService(
dataset_path=settings.KATA_KUNCI_PATH
)
return self._keyword_service
def process_audio(
self,
audio_path: str,
reference_text: Optional[str] = None,
topic_id: Optional[str] = None,
custom_topic: Optional[str] = None,
custom_keywords: Optional[List[str]] = None,
analyze_tempo: bool = True,
analyze_articulation: bool = True,
analyze_structure: bool = True,
analyze_keywords: bool = False,
analyze_profanity: bool = False
) -> Dict:
"""
Process audio file dengan semua analisis yang diminta
Args:
audio_path: Path ke file audio
reference_text: Teks referensi (untuk artikulasi)
topic_id: ID topik dari database (untuk Level 1-2)
custom_topic: Topik custom dari user (untuk Level 3)
custom_keywords: List kata kunci dari GPT (untuk Level 3)
analyze_tempo: Flag untuk analisis tempo
analyze_articulation: Flag untuk analisis artikulasi
analyze_structure: Flag untuk analisis struktur
analyze_keywords: Flag untuk analisis kata kunci
analyze_profanity: Flag untuk deteksi kata tidak senonoh
Returns:
Dict berisi semua hasil analisis
"""
start_time = time.time()
print("="*70)
print("π― STARTING AUDIO ANALYSIS")
print("="*70)
print(f"π Audio file: {audio_path}")
print(f"βοΈ Tempo: {analyze_tempo}")
print(f"βοΈ Articulation: {analyze_articulation}")
print(f"βοΈ Structure: {analyze_structure}")
print(f"βοΈ Keywords: {analyze_keywords}")
print(f"βοΈ Profanity: {analyze_profanity}")
print("="*70 + "\n")
results = {}
# 1. Speech to Text (always required)
print("π Step 1/6: Transcribing audio...")
transcript_result = self.stt_service.transcribe(audio_path)
transcript = transcript_result['text']
results['transcript'] = transcript
print(f"β
Transcript: {transcript[:100]}...\n")
# 2. Tempo Analysis
if analyze_tempo:
print("π΅ Step 2/6: Analyzing tempo...")
results['tempo'] = self.tempo_service.analyze(audio_path, transcript)
print(f"β
Tempo score: {results['tempo']['score']}/5\n")
# 3. Articulation Analysis
if analyze_articulation and reference_text:
print("π£οΈ Step 3/6: Analyzing articulation...")
results['articulation'] = self.articulation_service.analyze(
transcribed_text=transcript,
reference_text=reference_text
)
print(f"β
Articulation score: {results['articulation']['score']}/5\n")
elif analyze_articulation:
print("β οΈ Step 3/6: Skipping articulation (no reference text)\n")
# 4. Structure Analysis
if analyze_structure:
print("π Step 4/6: Analyzing structure...")
results['structure'] = self.structure_service.analyze(transcript)
print(f"β
Structure score: {results['structure']['score']}/5\n")
# 5. Keyword Analysis
if analyze_keywords:
print("π Step 5/6: Analyzing keywords...")
# Custom keywords (Level 3 - dari GPT)
if custom_topic and custom_keywords:
results['keywords'] = self.keyword_service.analyze(
speech_text=transcript,
custom_topic=custom_topic,
custom_keywords=custom_keywords
)
# Predefined topic (Level 1-2 - dari database)
elif topic_id:
results['keywords'] = self.keyword_service.analyze(
speech_text=transcript,
topic_id=topic_id
)
else:
print("β οΈ Step 5/6: Skipping keywords (no topic_id or custom_keywords)\n")
if 'keywords' in results:
print(f"β
Keyword score: {results['keywords']['score']}/5\n")
elif analyze_keywords:
print("β οΈ Step 5/6: Keywords analysis disabled\n")
# 6. Profanity Detection
if analyze_profanity:
print("π« Step 6/6: Detecting profanity...")
results['profanity'] = ProfanityDetector.detect_profanity(transcript)
status = "DETECTED" if results['profanity']['has_profanity'] else "CLEAN"
print(f"β
Profanity check: {status} ({results['profanity']['profanity_count']} words)\n")
# Calculate overall score
scores = []
if 'tempo' in results:
scores.append(results['tempo']['score'])
if 'articulation' in results:
scores.append(results['articulation']['score'])
if 'structure' in results:
scores.append(results['structure']['score'])
if 'keywords' in results:
scores.append(results['keywords']['score'])
if scores:
results['overall_score'] = round(sum(scores) / len(scores), 2)
else:
results['overall_score'] = 0
processing_time = time.time() - start_time
results['processing_time'] = round(processing_time, 2)
print("="*70)
print(f"β
ANALYSIS COMPLETE")
print(f"β±οΈ Processing time: {processing_time:.2f}s")
print(f"π Overall score: {results['overall_score']}/5")
print("="*70 + "\n")
return results
|