File size: 2,735 Bytes
e3fb95d 7208fd6 e3fb95d 915200b e3fb95d 7208fd6 e3fb95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import sklearn
import sqlite3
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import openai
import os
import gradio as gr
openai.api_key = os.environ["Secret"]
def find_closest_neighbors(vector1, dictionary_of_vectors):
"""
Takes a vector and a dictionary of vectors and returns the three closest neighbors
"""
vector = openai.Embedding.create(
input=vector1,
engine="text-embedding-ada-002"
)['data'][0]['embedding']
vector = np.array(vector)
cosine_similarities = {}
for key, value in dictionary_of_vectors.items():
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
match_list = sorted_cosine_similarities[0:4]
return match_list
def predict(message, history):
# Connect to the database
conn = sqlite3.connect('QRIdatabase7 (1).db')
cursor = conn.cursor()
cursor.execute('''SELECT text, embedding FROM chunks''')
rows = cursor.fetchall()
dictionary_of_vectors = {}
for row in rows:
text = row[0]
embedding_str = row[1]
embedding = np.fromstring(embedding_str, sep=' ')
dictionary_of_vectors[text] = embedding
conn.close()
# Find the closest neighbors
match_list = find_closest_neighbors(message, dictionary_of_vectors)
context = ''
for match in match_list:
context += str(match[0])
context = context[:-1500]
prep = f"This is an OpenAI model tuned to answer questions specific to the Qualia Research institute, a research institute that focuses on consciousness. Here is some question-specific context, and then the Question to answer, related to consciousness, the human experience, and phenomenology: {context}. Here is a question specific to QRI and consciousness in general Q: {message} A: "
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": prep})
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages= history_openai_format,
temperature=1.0,
stream=True
)
partial_message = ""
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
partial_message = partial_message + chunk['choices'][0]['delta']['content']
yield partial_message
demo = gr.ChatInterface(predict).queue()
if __name__ == "__main__":
demo.launch()
|