File size: 13,933 Bytes
41eedc7
28210ca
 
41eedc7
 
 
 
28210ca
41eedc7
 
28210ca
 
90d8dcc
 
28210ca
90d8dcc
41eedc7
 
 
 
 
 
 
 
90d8dcc
41eedc7
 
90d8dcc
 
 
 
41eedc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d8dcc
 
 
 
 
 
 
 
 
 
 
41eedc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d8dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9229863
90d8dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eedc7
 
 
 
28210ca
41eedc7
 
 
 
 
 
28210ca
41eedc7
 
 
 
 
 
28210ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eedc7
90d8dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eedc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d8dcc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from functools import cache
import io
import itertools
import torch
import torchvision.transforms as T
import os
import numpy as np
import seaborn as sns
from torch import nn
from torchvision.models import resnet50
from panopticapi.utils import id2rgb, rgb2id
from supervision import Detections, BoxAnnotator, MaskAnnotator
import onnx
import onnxruntime
from PIL import Image
from pathlib import Path

torch.set_grad_enabled(False)


# https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_demo.ipynb#scrollTo=cfCcEYjg7y46

DETR_DEMO_WEIGHTS_URI = "https://dl.fbaipublicfiles.com/detr/detr_demo-da2a99e9.pth"
TORCH_HOME = os.path.abspath(os.curdir) + "/data/cache"
ONNX_DIR = os.path.abspath(os.curdir) + "/data/onnx"
os.environ["TORCH_HOME"] = TORCH_HOME

Path(TORCH_HOME).mkdir(exist_ok=True)
Path(ONNX_DIR).mkdir(exist_ok=True)


print("Torch home:", TORCH_HOME)


# standard PyTorch mean-std input image normalization


def normalize_img(image):
    transform = T.Compose(
        [
            T.Resize(800),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    return transform(image).unsqueeze(0)


def normalize_img_800_800(image):
    transform = T.Compose(
        [
            T.Resize((800, 800)),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    return transform(image).unsqueeze(0)


# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)


def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
    return b


class DETRdemo(nn.Module):
    """
    Demo DETR implementation.

    Demo implementation of DETR in minimal number of lines, with the
    following differences wrt DETR in the paper:
    * learned positional encoding (instead of sine)
    * positional encoding is passed at input (instead of attention)
    * fc bbox predictor (instead of MLP)
    The model achieves ~40 AP on COCO val5k and runs at ~28 FPS on Tesla V100.
    Only batch size 1 supported.
    """

    def __init__(
        self,
        num_classes,
        hidden_dim=256,
        nheads=8,
        num_encoder_layers=6,
        num_decoder_layers=6,
    ):
        super().__init__()

        # create ResNet-50 backbone
        self.backbone = resnet50()
        del self.backbone.fc

        # create conversion layer
        self.conv = nn.Conv2d(2048, hidden_dim, 1)

        # create a default PyTorch transformer
        self.transformer = nn.Transformer(
            hidden_dim, nheads, num_encoder_layers, num_decoder_layers
        )

        # prediction heads, one extra class for predicting non-empty slots
        # note that in baseline DETR linear_bbox layer is 3-layer MLP
        self.linear_class = nn.Linear(hidden_dim, num_classes + 1)
        self.linear_bbox = nn.Linear(hidden_dim, 4)

        # output positional encodings (object queries)
        self.query_pos = nn.Parameter(torch.rand(100, hidden_dim))

        # spatial positional encodings
        # note that in baseline DETR we use sine positional encodings
        self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
        self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))

    def forward(self, inputs):
        # propagate inputs through ResNet-50 up to avg-pool layer
        x = self.backbone.conv1(inputs)
        x = self.backbone.bn1(x)
        x = self.backbone.relu(x)
        x = self.backbone.maxpool(x)

        x = self.backbone.layer1(x)
        x = self.backbone.layer2(x)
        x = self.backbone.layer3(x)
        x = self.backbone.layer4(x)

        # convert from 2048 to 256 feature planes for the transformer
        h = self.conv(x)

        # construct positional encodings
        H, W = h.shape[-2:]
        pos = (
            torch.cat(
                [
                    self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),
                    self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),
                ],
                dim=-1,
            )
            .flatten(0, 1)
            .unsqueeze(1)
        )

        # propagate through the transformer
        h = self.transformer(
            pos + 0.1 * h.flatten(2).permute(2, 0, 1), self.query_pos.unsqueeze(1)
        ).transpose(0, 1)

        # finally project transformer outputs to class labels and bounding boxes
        return {
            "pred_logits": self.linear_class(h),
            "pred_boxes": self.linear_bbox(h).sigmoid(),
        }


class SimpleDetr:
    @cache
    def __init__(self):
        self.model = DETRdemo(num_classes=91)
        state_dict = torch.hub.load_state_dict_from_url(
            url=DETR_DEMO_WEIGHTS_URI,
            map_location="cpu",
            check_hash=True,
        )
        self.model.load_state_dict(state_dict)
        self.model.eval()
        self.box_annotator: BoxAnnotator = BoxAnnotator()

    def detect(self, image, conf):
        # mean-std normalize the input image (batch-size: 1)
        img = normalize_img(image)

        # demo model only support by default images with aspect ratio between 0.5 and 2
        # if you want to use images with an aspect ratio outside this range
        # rescale your image so that the maximum size is at most 1333 for best results
        assert (
            img.shape[-2] <= 1600 and img.shape[-1] <= 1600
        ), "demo model only supports images up to 1600 pixels on each side"

        # propagate through the model
        outputs = self.model(img)
        # keep only predictions with 0.7+ confidence
        scores = outputs["pred_logits"].softmax(-1)[0, :, :-1]
        keep = scores.max(-1).values > conf
        # convert boxes from [0; 1] to image scales
        bboxes_scaled = rescale_bboxes(outputs["pred_boxes"][0, keep], image.size)
        probas = scores[keep]
        class_id = []
        confidence = []
        for prob in probas:
            cls_id = prob.argmax()
            c = prob[cls_id]
            class_id.append(int(cls_id))
            confidence.append(float(c))
        print(class_id, confidence)
        detections = Detections(
            xyxy=bboxes_scaled.cpu().detach().numpy(),
            class_id=np.array(class_id),
            confidence=np.array(confidence),
        )
        annotated = self.box_annotator.annotate(
            scene=np.array(image),
            skip_label=False,
            detections=detections,
            labels=[
                f"{CLASSES[cls_id]} {conf:.2f}"
                for cls_id, conf in zip(detections.class_id, detections.confidence)
            ],
        )
        return annotated

    def export(self):
        model_path = f"{ONNX_DIR}/detr_simple_demo_onnx.onnx"
        dummy_image = torch.ones(1, 3, 800, 800, device="cpu")
        input_names = ["inputs"]
        output_names = ["pred_logits", "pred_boxes"]
        torch.onnx.export(
            self.model,
            dummy_image,
            model_path,
            input_names=input_names,
            output_names=output_names,
            # dynamic_axes={input_names[0]: {0: "batch_size", 2: "height", 3: "width"}}, #!TODO
            export_params=True,
            training=torch.onnx.TrainingMode.EVAL,
            opset_version=14,
        )
        onnx_model = onnx.load(model_path)

        # Check the model
        try:
            onnx.checker.check_model(onnx_model)
        except onnx.checker.ValidationError as e:
            print(f"The model is invalid: {e}")
        else:
            print("The model is valid!")
        return model_path


class SimpleDetrOnnx:
    @cache
    def __init__(self):
        self.box_annotator: BoxAnnotator = BoxAnnotator()
        onnx_sess_opts = onnxruntime.SessionOptions()
        onnx_sess_opts.graph_optimization_level = (
            onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
            # onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
        )
        onnx_sess_opts.enable_mem_pattern = True
        onnx_sess_opts.enable_cpu_mem_arena = True
        self.ort_session = onnxruntime.InferenceSession(
            f"{ONNX_DIR}/detr_simple_demo_onnx.onnx",
            sess_options=onnx_sess_opts,
            providers=[
                "CUDAExecutionProvider",
                "CoreMLExecutionProvider",
                "CPUExecutionProvider",
            ],
        )
        self.classes = {}
        self.metadata = self.ort_session.get_modelmeta()
        self.providers = self.ort_session.get_providers()
        print(f"[OnnxRuntime] Providers:{self.providers}")
        print(
            f"[OnnxRuntime] medatadata: {self.metadata.custom_metadata_map} {type(self.metadata.custom_metadata_map)}"
        )

    def detect(self, image, conf):
        # dummy_image = np.ones((1, 3, 600, 800), dtype=np.float32)
        im = normalize_img_800_800(image).numpy()
        print("SHAPE", im.shape)
        ort_inputs = {self.ort_session.get_inputs()[0].name: im}
        outputs = self.ort_session.run(None, ort_inputs)
        pred_logits = torch.tensor(
            outputs[0]
        )  # conversion to torch for simplicity (softmax etc)
        pred_boxes = torch.tensor(outputs[1])
        scores = pred_logits.softmax(-1)[0, :, :-1]
        keep = scores.max(-1).values > conf
        bboxes_scaled = rescale_bboxes(pred_boxes[0, keep], image.size)
        probas = scores[keep]
        class_id = []
        confidence = []
        for prob in probas:
            cls_id = prob.argmax()
            c = prob[cls_id]
            class_id.append(int(cls_id))
            confidence.append(float(c))
        print(class_id, confidence)
        detections = Detections(
            xyxy=bboxes_scaled.cpu().detach().numpy(),
            class_id=np.array(class_id),
            confidence=np.array(confidence),
        )
        annotated = self.box_annotator.annotate(
            scene=np.array(image),
            skip_label=False,
            detections=detections,
            labels=[
                f"{CLASSES[cls_id]} {conf:.2f}"
                for cls_id, conf in zip(detections.class_id, detections.confidence)
            ],
        )
        return annotated


class PanopticDetrResenet101:
    @cache
    def __init__(self):
        self.model, self.postprocessor = torch.hub.load(
            "facebookresearch/detr",
            "detr_resnet101_panoptic",
            pretrained=True,
            return_postprocessor=True,
            num_classes=250,
        )
        self.model.eval()

    def detect(self, image, conf):
        # mean-std normalize the input image (batch-size: 1)
        img = normalize_img(image)

        outputs = self.model(img)
        result = self.postprocessor(
            outputs, torch.as_tensor(img.shape[-2:]).unsqueeze(0)
        )[0]
        print(result.keys())
        palette = itertools.cycle(sns.color_palette())

        # The segmentation is stored in a special-format png
        panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
        panoptic_seg = np.array(panoptic_seg, dtype=np.uint8).copy()
        # We retrieve the ids corresponding to each mask
        panoptic_seg_id = rgb2id(panoptic_seg)

        # Finally we color each mask individually
        panoptic_seg[:, :, :] = 0
        for id in range(panoptic_seg_id.max() + 1):
            panoptic_seg[panoptic_seg_id == id] = np.asarray(next(palette)) * 255
        return panoptic_seg

    def export(self):
        model_path = f"{ONNX_DIR}/detr_resnet101_panoptic.onnx"
        dummy_image = torch.ones(1, 3, 800, 800, device="cpu")
        input_names = ["inputs"]
        output_names = ["pred_logits", "pred_boxes", "pred_masks"]
        torch.onnx.export(
            self.model,
            dummy_image,
            model_path,
            input_names=input_names,
            output_names=output_names,
            export_params=True,
            training=torch.onnx.TrainingMode.EVAL,
            opset_version=14,
        )
        onnx_model = onnx.load(model_path)

        # Check the model
        try:
            onnx.checker.check_model(onnx_model)
        except onnx.checker.ValidationError as e:
            print(f"The model is invalid: {e}")
        else:
            print("The model is valid!")
        return model_path


# COCO classes
CLASSES = [
    "N/A",
    "person",
    "bicycle",
    "car",
    "motorcycle",
    "airplane",
    "bus",
    "train",
    "truck",
    "boat",
    "traffic light",
    "fire hydrant",
    "N/A",
    "stop sign",
    "parking meter",
    "bench",
    "bird",
    "cat",
    "dog",
    "horse",
    "sheep",
    "cow",
    "elephant",
    "bear",
    "zebra",
    "giraffe",
    "N/A",
    "backpack",
    "umbrella",
    "N/A",
    "N/A",
    "handbag",
    "tie",
    "suitcase",
    "frisbee",
    "skis",
    "snowboard",
    "sports ball",
    "kite",
    "baseball bat",
    "baseball glove",
    "skateboard",
    "surfboard",
    "tennis racket",
    "bottle",
    "N/A",
    "wine glass",
    "cup",
    "fork",
    "knife",
    "spoon",
    "bowl",
    "banana",
    "apple",
    "sandwich",
    "orange",
    "broccoli",
    "carrot",
    "hot dog",
    "pizza",
    "donut",
    "cake",
    "chair",
    "couch",
    "potted plant",
    "bed",
    "N/A",
    "dining table",
    "N/A",
    "N/A",
    "toilet",
    "N/A",
    "tv",
    "laptop",
    "mouse",
    "remote",
    "keyboard",
    "cell phone",
    "microwave",
    "oven",
    "toaster",
    "sink",
    "refrigerator",
    "N/A",
    "book",
    "clock",
    "vase",
    "scissors",
    "teddy bear",
    "hair drier",
    "toothbrush",
]

# model = SimpleDetr()
# model.export()